京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国在政策上大力推动数字化产业转型,为AI人工智能发展提供了极佳的温床。
这不,好消息传来,《世界互联网发展报告2020》和《中国互联网发展报告2020》指出,我国在AI专利申请数量上首次超美国,成全球TOP1。
另外,5G网络技术及覆盖上的领先,推动着AI、大数据、云计算、区块链等迎来井喷式发展,这些高科技相互交错影响,产生了质的变化。
尤其是作为AI人工智能发展催化剂的大数据,人口大国具备“得天独厚”的优势,大数据自然离不开“大”字,即:大而广。
中国有14亿人口,产生的数据惊人,这背后暗含的数据“关联”或“相关性”,未来将发挥巨大价值。
大数据的繁荣,已助推AI完美实现弯道超车,让AI技术在中国“遍地开花”,快速且蓬勃地发展。
现如今,人工智能已渗透各行各业,大幅提升了企业生产效率,国内很多公司成立了专门研究未来创新技术的部门,如:阿里巴巴的达摩院等。
国内大佬腾讯、华为也成立了人工智能研究部门,京东亦有专门的事业部研究无人车、无人仓及无人机,甚至较传统的“美的集团”亦设立了机器人公司。
热门话题:AI人工智能
无论在国内,还是全世界,AI人工智能早已是热门话题,其发展前景极佳,已成未来10年最具发展潜力的行业之一。
然而,由于人工智能的概念宽泛,涉及算法、识别、语言处理等技术,被社会大众公认为高科技,导致很多人不敢轻易涉足。
诚然,“男怕入错行,女怕嫁错郎",人们对工作的选择谨慎小心是正确的,不过如果您担心自己不能从事人工智能,那不妨留意下周边行业。
和人工智能有着异曲同工之妙的行业,还有数据分析,大家可以上网搜搜,会发现与之相关的职业平均月薪接近20k,且大数据人才需求总量,将在未来5年突破2000万人的巨大缺口而发展起来的。
数据分析行业前景如何?
人力资源和社会保障部发布《新职业—大数据工程技术人员就业景气现状分析报告》显示,2020中国大数据行业人才需求规模达210万,未来5年该需求仍将以30%-40%增速发展。
2013-2017年排名前五职位增长率
图片来源:领英中国2019年《新兴职业报告》
据悉,如今的互联网、金融、咨询、电信、零售、医疗、旅游等行业,都迫切需要专门从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。
正所谓行业越热证书含金量越高,技能越硬越易被认证。类似CFA、CPA、PMP、ACCA快速发展并得到行业高度认可一样,数据分析行业内高含金量的认证也有着同样的轨迹。
CDA数据分析师认证由国际范围数据科学领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了公立性、共识性、前沿性,符合当今全球数据科学技术潮流,为各行业企业和机构提供数据人才参照标准。
从而,得到了教育部主管协会中国成人教育协会认可,跻身为2020年“终身学习品牌项目”,成为大数据及人工智能领域长期、稳定、专业的行业人才标准。
CDA数据分析师认证
如何报考
了解报考条件及政策
长按扫码,立即咨询
考取对的证书,不仅能成你入行敲门砖,还可让你拥有具备核心竞争力的技能。相信对于CDA数据分析师认证证书,大家心里还是有很多问题。
接下来,我们继续深入扒一扒这个证书
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27