
来源:麦叔编程
作者:麦叔
本文以内部函数为主线,深入讲解内部函数和闭包的应用场景和原理,学会后你的Python水平会再上一个台阶,对工作面试或实战应用都会很有帮助。
本文包括:
阅读到最后可以获得本文PDF资料和源代码下载,建议收藏。
Python是面向对象的编程语言,对象是Python的一等公民,我们常用的字符串str,整数int,和其他变量都是对象。
函数也是对象,所以也是一等公民,这就意味着它和变量一样
def say_hello(): print('hello')
print(say_hello) def say_something(some_func): for _ in range(3):
some_func()
say_something(say_hello)
执行结果:
say_hello at 0x7ff3d35b9160>
hello
hello
hello
把函数的内部定义函数,就是内部函数(有点像废话,但就那么个意思)。
def outter(): print('我是外部函数')
def inner(): print('我是outter的内部函数')
print('调用内部函数')
inner()
print('我再次调用内部函数,自己家的想用就用,随时用')
inner()
print('还可以返回给大家共用')
return inner #调用外部函数,并接受返回值 func = outter() #调用outter返回的内部函数
print('在外部调用内部函数')
func()
注意: 调用的时候加小括号inner(),作为参数或者返回值的时候不加小括号inner,是引用这个函数对象。
执行结果:
我是外部函数 调用内部函数 我是outter的内部函数 我再次调用内部函数,自己家的想用就用,随时用 我是outter的内部函数 还可以返回给大家共用 在外部调用内部函数 我是outter的内部函数
如果内部函数只是把函数定义在函数的内部,那就没有多大意思了,它还有一个很大的特点,正因为这个特点,它才被称为闭包clsure。
学过JavaScript的非小白同学可能会对这个概念很熟悉。
内部函数还有一个很重要的特性:
所以说Python中的闭包就是内部函数,准确点是使用了nonlocal变量的内部函数。
import random def create_room(): room_no = random.randint(1, 100)
print(f'我创建了房间号:{room_no}')
def toilet(): print(f'我是{room_no}的内部厕所')
print('上厕所')
toilet()
print('我再次上厕所,自己家的想用就用,随时用')
toilet()
print('还可以共享给大家共用')
return toilet #调用外部函数,并接受返回值 toilet = create_room() #调用outter返回的内部函数
print('在外部使用内部厕所')
toilet()
print('在外部再次使用内部厕所')
toilet()
运行结果:
我创建了房间号:52 上厕所 我是52的内部厕所 我再次上厕所,自己家的想用就用,随时用 我是52的内部厕所 还可以共享给大家共用 在外部使用内部厕所 我是52的内部厕所 在外部再次使用内部厕所 我是52的内部厕所
说的这么玄乎,其实就是内部函数使用了外部函数的局部变量,所以局部变量被内部函数给封存了,也就不会释放了。
内部函数也可以改写外部函数的变量值,但需要使用nonlocal关键词声明这是外部的变量。
回忆一下:函数内部修改全局变量,需要使用global关键词。
import random def create_room(): room_no = random.randint(1, 100)
print(f'我创建了房间号:{room_no}')
def toilet(): nonlocal room_no
room_no = random.randint(1, 100)
print(f'我是{room_no}的内部厕所')
print('上厕所')
toilet()
print(f'房间号:{room_no}')
print('我再次上厕所,自己家的想用就用,随时用')
toilet()
print(f'房间号:{room_no}')
print('还可以共享给大家共用')
return toilet #调用外部函数,并接受返回值 toilet = create_room() #调用outter返回的内部函数
print('在外部使用内部厕所')
toilet()
print('在外部再次使用内部厕所')
toilet()
使用nonlocal在内部函数改变外部变量room_no的值,所以每次上厕所,都会改变房间号(很神奇的房间):
我创建了房间号:39 上厕所 我是43的内部厕所 房间号:43 我再次上厕所,自己家的想用就用,随时用 我是66的内部厕所 房间号:66 还可以共享给大家共用 在外部使用内部厕所 我是52的内部厕所 在外部再次使用内部厕所 我是29的内部厕所
其实内部函数就这么点东西了(后面再说它的实现原理),现在来看到底有什么实实在在的用处。
下面来说3个应用场景:
写在内部是因为只有在内部才有用,外部根本不需要,也不想让他们使用,就像上面的内部厕所的例子,实际上是不可能在外面使用的。这种场景叫做封装。
import random def create_room(): room_no = random.randint(1, 100)
print(f'我创建了房间号:{room_no}')
def toilet(): print(f'欢迎进入{room_no}的VIP厕所')
print('冲水')
print('请君入厕')
print('洗手')
print('热毛巾')
print('欢迎下次光临')
print('上厕所')
toilet()
print('上厕所')
toilet()
print('上厕所')
toilet() #调用外部函数,并接受返回值 create_room()
再总结一下:
内部函数可以方便的生成新的函数,看这个例子:
def team_maker(type, level, temperature): '''
type: 品种,如绿茶,红茶
level: 等级,特级,一级,二级
temper: 温度
''' def tea(water): print('正在沏茶中')
print(f'{type},{level}, {temperature}')
print(f'{water}毫升给您冲好了')
return tea #创建符合我口味的沏茶函数 mytea = team_maker('绿茶', '特级', '66.6')
#创建符合她口味的沏茶函数 herteam = team_maker('红茶', '一级', '88.8')
print('我们来一杯')
mytea(500)
herteam(300)
print('多喝点')
mytea(800)
herteam(600)
print('完了,我喝醉了...,因为有她')
运行结果:
我们来一杯 正在沏茶中 绿茶,特级, 66.6 500毫升给您冲好了 正在沏茶中 红茶,一级,
88.8 300毫升给您冲好了 多喝点 正在沏茶中 绿茶,特级,
66.6 800毫升给您冲好了 正在沏茶中 红茶,一级, 88.8 600毫升给您冲好了 完了,我喝醉了...
装饰器对Python至关重要。这也是内部函数的主要使用场景。
写到这里忽然有点累了,我想起来我有两篇还不错的装饰器的文章,直接拿来看吧。我就不重复码字了。
结合内部函数的文章和装饰器的文章,应该会通透了。
这两篇文章见本文底部相关阅读前两篇。
闭包携带了外部函数的变量,所以可以访问这些变量,而这些变量也不会被释放。具体是怎么实现的呢?
答案就1个字:__closure__属性。Python给内部函数添加了这个属性来携带内部函数用到的外部函数中的变量。
import random def create_room(): room_no = random.randint(1, 100)
print(f'我创建了房间号:{room_no}')
def toilet(): print(f'我是{room_no}的内部厕所')
return toilet
print('调用外部函数')
toilet = create_room()
print('打印一下toilet函数的变量,其中有一个是__closure__')
print(dir(toilet))
print('__closure__是一个包含它携带的变量的元组')
print(toilet.__closure__)
print('__closure__元组里是cell,通过cell_contents可以访问所携带的变量值')
print(toilet.__closure__[0].cell_contents)
执行结果:
import random def create_room(): room_no = random.randint(1, 100)
print(f'我创建了房间号:{room_no}')
def toilet(): print(f'我是{room_no}的内部厕所')
return toilet
print('调用外部函数')
toilet = create_room()
print('打印一下toilet函数的变量,其中有一个是__closure__')
print(dir(toilet))
print('__closure__是一个包含它携带的变量的元组')
print(toilet.__closure__)
print('__closure__元组里是cell,通过cell_contents可以访问所携带的变量值')
print(toilet.__closure__[0].cell_contents)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15