京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
本文以内部函数为主线,深入讲解内部函数和闭包的应用场景和原理,学会后你的Python水平会再上一个台阶,对工作面试或实战应用都会很有帮助。
本文包括:
阅读到最后可以获得本文PDF资料和源代码下载,建议收藏。
Python是面向对象的编程语言,对象是Python的一等公民,我们常用的字符串str,整数int,和其他变量都是对象。
函数也是对象,所以也是一等公民,这就意味着它和变量一样
def say_hello(): print('hello')
print(say_hello) def say_something(some_func): for _ in range(3):
some_func()
say_something(say_hello)
执行结果:
say_hello at 0x7ff3d35b9160>
hello
hello
hello
把函数的内部定义函数,就是内部函数(有点像废话,但就那么个意思)。
def outter(): print('我是外部函数')
def inner(): print('我是outter的内部函数')
print('调用内部函数')
inner()
print('我再次调用内部函数,自己家的想用就用,随时用')
inner()
print('还可以返回给大家共用')
return inner #调用外部函数,并接受返回值 func = outter() #调用outter返回的内部函数
print('在外部调用内部函数')
func()
注意: 调用的时候加小括号inner(),作为参数或者返回值的时候不加小括号inner,是引用这个函数对象。
执行结果:
我是外部函数 调用内部函数 我是outter的内部函数 我再次调用内部函数,自己家的想用就用,随时用 我是outter的内部函数 还可以返回给大家共用 在外部调用内部函数 我是outter的内部函数
如果内部函数只是把函数定义在函数的内部,那就没有多大意思了,它还有一个很大的特点,正因为这个特点,它才被称为闭包clsure。
学过JavaScript的非小白同学可能会对这个概念很熟悉。
内部函数还有一个很重要的特性:
所以说Python中的闭包就是内部函数,准确点是使用了nonlocal变量的内部函数。
import random def create_room(): room_no = random.randint(1, 100)
print(f'我创建了房间号:{room_no}')
def toilet(): print(f'我是{room_no}的内部厕所')
print('上厕所')
toilet()
print('我再次上厕所,自己家的想用就用,随时用')
toilet()
print('还可以共享给大家共用')
return toilet #调用外部函数,并接受返回值 toilet = create_room() #调用outter返回的内部函数
print('在外部使用内部厕所')
toilet()
print('在外部再次使用内部厕所')
toilet()
运行结果:
我创建了房间号:52 上厕所 我是52的内部厕所 我再次上厕所,自己家的想用就用,随时用 我是52的内部厕所 还可以共享给大家共用 在外部使用内部厕所 我是52的内部厕所 在外部再次使用内部厕所 我是52的内部厕所
说的这么玄乎,其实就是内部函数使用了外部函数的局部变量,所以局部变量被内部函数给封存了,也就不会释放了。
内部函数也可以改写外部函数的变量值,但需要使用nonlocal关键词声明这是外部的变量。
回忆一下:函数内部修改全局变量,需要使用global关键词。
import random def create_room(): room_no = random.randint(1, 100)
print(f'我创建了房间号:{room_no}')
def toilet(): nonlocal room_no
room_no = random.randint(1, 100)
print(f'我是{room_no}的内部厕所')
print('上厕所')
toilet()
print(f'房间号:{room_no}')
print('我再次上厕所,自己家的想用就用,随时用')
toilet()
print(f'房间号:{room_no}')
print('还可以共享给大家共用')
return toilet #调用外部函数,并接受返回值 toilet = create_room() #调用outter返回的内部函数
print('在外部使用内部厕所')
toilet()
print('在外部再次使用内部厕所')
toilet()
使用nonlocal在内部函数改变外部变量room_no的值,所以每次上厕所,都会改变房间号(很神奇的房间):
我创建了房间号:39 上厕所 我是43的内部厕所 房间号:43 我再次上厕所,自己家的想用就用,随时用 我是66的内部厕所 房间号:66 还可以共享给大家共用 在外部使用内部厕所 我是52的内部厕所 在外部再次使用内部厕所 我是29的内部厕所
其实内部函数就这么点东西了(后面再说它的实现原理),现在来看到底有什么实实在在的用处。
下面来说3个应用场景:
写在内部是因为只有在内部才有用,外部根本不需要,也不想让他们使用,就像上面的内部厕所的例子,实际上是不可能在外面使用的。这种场景叫做封装。
import random def create_room(): room_no = random.randint(1, 100)
print(f'我创建了房间号:{room_no}')
def toilet(): print(f'欢迎进入{room_no}的VIP厕所')
print('冲水')
print('请君入厕')
print('洗手')
print('热毛巾')
print('欢迎下次光临')
print('上厕所')
toilet()
print('上厕所')
toilet()
print('上厕所')
toilet() #调用外部函数,并接受返回值 create_room()
再总结一下:
内部函数可以方便的生成新的函数,看这个例子:
def team_maker(type, level, temperature): '''
type: 品种,如绿茶,红茶
level: 等级,特级,一级,二级
temper: 温度
''' def tea(water): print('正在沏茶中')
print(f'{type},{level}, {temperature}')
print(f'{water}毫升给您冲好了')
return tea #创建符合我口味的沏茶函数 mytea = team_maker('绿茶', '特级', '66.6')
#创建符合她口味的沏茶函数 herteam = team_maker('红茶', '一级', '88.8')
print('我们来一杯')
mytea(500)
herteam(300)
print('多喝点')
mytea(800)
herteam(600)
print('完了,我喝醉了...,因为有她')
运行结果:
我们来一杯 正在沏茶中 绿茶,特级, 66.6 500毫升给您冲好了 正在沏茶中 红茶,一级,
88.8 300毫升给您冲好了 多喝点 正在沏茶中 绿茶,特级,
66.6 800毫升给您冲好了 正在沏茶中 红茶,一级, 88.8 600毫升给您冲好了 完了,我喝醉了...
装饰器对Python至关重要。这也是内部函数的主要使用场景。
写到这里忽然有点累了,我想起来我有两篇还不错的装饰器的文章,直接拿来看吧。我就不重复码字了。
结合内部函数的文章和装饰器的文章,应该会通透了。
这两篇文章见本文底部相关阅读前两篇。
闭包携带了外部函数的变量,所以可以访问这些变量,而这些变量也不会被释放。具体是怎么实现的呢?
答案就1个字:__closure__属性。Python给内部函数添加了这个属性来携带内部函数用到的外部函数中的变量。
import random def create_room(): room_no = random.randint(1, 100)
print(f'我创建了房间号:{room_no}')
def toilet(): print(f'我是{room_no}的内部厕所')
return toilet
print('调用外部函数')
toilet = create_room()
print('打印一下toilet函数的变量,其中有一个是__closure__')
print(dir(toilet))
print('__closure__是一个包含它携带的变量的元组')
print(toilet.__closure__)
print('__closure__元组里是cell,通过cell_contents可以访问所携带的变量值')
print(toilet.__closure__[0].cell_contents)
执行结果:
import random def create_room(): room_no = random.randint(1, 100)
print(f'我创建了房间号:{room_no}')
def toilet(): print(f'我是{room_no}的内部厕所')
return toilet
print('调用外部函数')
toilet = create_room()
print('打印一下toilet函数的变量,其中有一个是__closure__')
print(dir(toilet))
print('__closure__是一个包含它携带的变量的元组')
print(toilet.__closure__)
print('__closure__元组里是cell,通过cell_contents可以访问所携带的变量值')
print(toilet.__closure__[0].cell_contents)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16