
来源:早起Python
作者:陈熹、刘早起
大家好,又到了Python办公自动化(偷懒)专题。
今天介绍的案例是如何利用Python来自动化移动、修改、重命名文件/夹,这样的操作在日常办公中经常会用到,若能掌握用Python实现将会大大提高效率!
所以我希望能够通过这篇文章来让大家了解:如何基于 os glob 和 shutil 对文件管理的综合运用!
为了让本文介绍的案例更有通用型,我新建了一个文件夹 files1 存放着 1800+ 个文件,如下所示:
需要完成的内容如下
“
将 1835 个文件移动到新文件夹 file2,并且重命名文件,名字开头加上 序号 和 “终稿” 两个字,如名字更改为 “1-终稿-xxxxx(原文件名)”
”
你心里可能想着:这是人做的事??? 但确实这是真实的需求,文件批量重命名非常常见,如果没有一些技巧,那么只能耗费大量的时间和人力去做。这里的技巧,就是 Python
另外还有一个问题:要先移动再重命名还是先重命名再移动呢? 继续往下看!
真实的办公场景并不会这样的需求,毕竟谁想要无端给自己的电脑产生大量无用文件呢(也不要给别人的电脑乱用)
不得不提,生成随机文件能够帮助我们更好的测试自己 Python 文件管理的技能。如果你没有合适的文件夹和文件夹供自己练习,那么为什么不自己写个代码产生呢?
当然,在这个过程中我们也会学习一些知识点,先看代码:
import random import string for i in range(2000):
random_str = ''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11)))
file = open(r"C:\xxx\file1" + random_str + ".txt", 'w+') # 前面路径是产生文件的目标文件夹
file.write(''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11))))
file.close()
通过 string 就可以获得所有的字母和数字,利用 random.sample() 常规接受两个参数,一个是抽样的范围,一个是抽样的次数,默认是放回抽样。这样就可以在给定的字母数字范围内随机抽取 1-10 个,但是返回的结果注意是列表,需要再用 .join 方法完成字符串拼接
用随机产生的名字生成文件后,再在其内部用类似的方法随机写入一些内容:
上面的写法不够优雅,因为需要配套使用 file.close() 释放,更好的方法是直接利用上下文管理器 with 结构,减少出错的几率
import random import string for i in range(2000):
random_str = ''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11)))
with open(r"C:\xxx\file1" + random_str + ".txt", 'w+') as file:
file.write(''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11))))
因为即使是随机产生名字,但抽样的范围和次数不大决定了 2000 次抽样会有一些抽签组合成的名字完全一样,后面形成的文件会覆盖之前产生的文件,最终导致产生的文件没有 2000 个。
需要用到内置库 os 的 os.rename() 方法
import os os.rename('practice.txt', 'practice_rename.txt') # 重命名文件 os.rename('文件夹1', '文件夹2') # 重命名文件夹
虽然需求中有重命名文件的需求,但实际上并不需要直接借助这个方法
需要用到内置库 shutil 的 shutil.move 方法
import shutil
shutil.move(r'.practice.txt', r'.文件夹1/')
shutil.move(r'.practice.txt', r'.文件夹1/new.txt')
注意到上面后两行代码的区别吗?前一行是将目标文件移动到目标文件夹里,而后一行,在将目标文件移动到目标文件夹里的同时,能够对其进行重命名
也就是说,我们并不需要用 os.rename 先命名文件再用 shutil.move 将其移动的指定文件夹,而是可以用 shutil.move 一步到位。
采用基于 glob 库的迭代框架:
import glob
path = xxx for file in glob.glob(f'{path}/**/*.xlsx', recursive=True):
pass
上面的代码能够获取给定路径内部所有文件夹下的 Excel 文件(.xlsx 格式), recursive 参数默认为 False,当为 True 时允许逐级遍历
而本例需要获取给定文件夹下的所有 .txt 文件,则更加简单:
import glob
path = xxx for file in glob.glob(f'{path}/*.txt'):
pass
在上面一节我们已经把需求拆分为多个小块并理清了思路,现在可以开始写代码了。首先导入需要的库
import os import shutil import glob
path = r"C:xxx" # 存放大量需更名移动文件的文件夹路径的上一级路径
上文提到,不需要利用 os.rename 那为什么要导入 os 库呢?
一方面因为要通过这个库产生新的文件夹。也可以手动完成,但交给代码多了判断也不容易出错:
if not os.path.exists(path + r'file2'):
os.mkdir(path + r'file2')
另一方面下文还会用它获取文件名,然后就可以移动更名一步到位,glob 迭代文件框架遍历获取文件绝对路径:
count = 1 # 生成序号 for file in glob.glob(f'{path}\测试\*.txt'):
# 这里是文件绝对路径,可以用字符串方法直接替换修改,但为了方便理解我还是用路径拼接 filename = os.path.basename(file)
shutil.move(file, path + r'file2' + f'{count}-终稿-{filename}')
count += 1
看到没,Python、3秒、搞定、干饭!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08