
来源:Python猫
作者:豌豆花下猫
最近,我在翻阅两本比较新的 Python 书籍时,发现它们都犯了一个严重的低级错误!
这两本书分别是《Python编程:从入门到实践》和《父与子的编程之旅》,它们都是畅销书,都在 2020 年 10 月出了新版本,都使用 Python3.7+ 版本的语法。
然而,在关于变量的命名规则部分,它们犯下了一样的错误,即还在使用 Python2 时代的那套说辞,误以为命名仅仅支持“字母、数字和下划线”的组合。事实上,Python3.x 已经支持全面 Unicode 编码,比如支持使用中文作为变量名。
>>> 姓名 ="Python猫" >>> print(f"我是{姓名},欢迎关注!") 我是Python猫,欢迎关注!
由于我手头上没有其它样本,所以,我不确定有多少新版的书籍还在使用老的规则。但是,翻译类的书籍大概率都会有这样的问题,另外,有些不严谨的国内书籍,也可能因为借鉴了过时的材料而犯错。
如此一来,恐怕有些新接触 Python 的同学,就会形成错误的认识。虽然这可能不会造成严重的问题,但是它终归是一个应该避免而且很容易就能避免的问题。
因此,我觉得这个话题值得聊一聊。
在编程语言中有一个很常见的概念,即标识符(identifier),通常又会称之为名字(name),用于标识出变量、常量、函数、类、符号等实体的名字。
在定义标识符时,有一些必须要考虑的基本规则:
对于第一个问题,大多数的编程语言在早期版本都遵循这条规则:标识符由字母、数字和下划线组成,并且不能以数字为开头。 少数的编程语言有例外,还支持使用$、@、%等特殊符号(例如PHP、Ruby、Perl等等)。
Python 的早期版本,确切地说是 3.0 之前的版本,就遵循以上的命名规则。下面是官方文档中的描述:
identifier ::= (letter|"_") (letter | digit | "_")* letter ::= lowercase | uppercase lowercase ::= "a"..."z" uppercase ::= "A"..."Z" digit ::= "0"..."9"
出处:https://docs.python.org/2.7/reference/lexical_analysis.html#identifiers
但是,这条规则从 3.0 版本起,就被打破了。最新的官方文档已经变成了这样:
出处:https://docs.python.org/3/reference/lexical_analysis.html#identifiers
随着互联网的普及,各国语言进入了国际化的语境中,编程语言也与时俱进地增长了对国际化的诉求。
Unicode(译作统一码、万国码)编码标准在 1994 年发布,随后逐步被主流的编程语言所接纳。到目前为止,至少有 73 种编程语言支持 Unicode 变量名(数据依据:https://rosettacode.org/wiki/Unicode_variable_names)。
2007 年,当 Python 正在设计划时代的 3.0 版本时,官方也考虑了对 Unicode 编码的支持,于是,诞生了重要的《PEP 3131 -- Supporting Non-ASCII Identifiers》。
出处:https://www.python.org/dev/peps/pep-3131
事实上,除了我们最关心的中文,Unicode 字符集还包含非常非常多的内容。
在对变量命名时,下面这些用法都是可行的(谨慎使用,如若被打,本猫概不负责……):
>>> ψ = 1 >>> Δ = 1 >>> ಠ_ಠ = "hello"
综上所述,某些 Python 书籍中关于变量命名规则的内容已经过时了,不应该被其所误导!
Python 3 作为一门面向现代化/国际化的语言,对于 Unicode 编码有很好的支持。至于该不该在项目中使用中文给标识符命名,那就是另外的问题啦……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08