
公众号:AirPython
作者:星安果
最近一个小姐姐在后台给我留言,说自己的工作是短视频剪辑,经常需要熬夜剪片子,其中,音频处理费时费力,问我能不能利用自动化减轻她的工作
前面很多文章都使用了一款非常强大的依赖库,即:moviepy,它能非常快捷地完成视频剪辑
pydub 是一款简单、方便且强大的 Python 音频处理库
项目地址:https://github.com/jiaaro/pydub
日常音频剪辑处理工具,都可以使用它来完成,比如:提取音频、音频切断、音效处理、响度控制、声道配置、音频合成等
首先,安装依赖包
接下来,我们来聊聊 pydub 常见的操作
3-1 AudioSegment 对象
pudub 最重要的一个类是:AudioSegment
它是一个不可变的对象,代表一个音频段对象
首先,我们实例化一个 AudioSegment 对象,它内置有多种实现方式
比如,我们从本地加载一个 wav 的音频文件
3-2 裁剪某段音频
针对 AudioSegment 对象,使用中括号指定开始时间和结束时间,即可以快速提取某一段音频
PS:时间以毫秒为单位
3-3 合并音频
使用 pydub 合并多段音频非常便捷,只需要使用符号 +,将三段音频的 AudioSegment 对象加起来即可
3-4 音频常见属性
音频比较常见的属性包含:
对于音频的时长,有 2 种获取方式,即:
其他原始数据都可以从 AudioSegment 对象相应的属性中获取 :
3-5 单条音频淡入淡出
视频剪辑中,经常需要对音频做淡入淡出处理,使音效播放更加自然
比如:针对单个音频,在开头使用淡入,结束使用淡出,并指定淡入和淡出的时间
PS:单位以毫秒为单位
需要指出的是,AudioSegment 对象内置的 fade() 函数,可以更加灵活地实现淡入淡出效果
3-6 调整音频播放速度
视频剪辑中,音频速度的调整很常见
比如:在视频结尾,调整最后的画面帧为慢动作,同样需要同步调慢音频的播放速度
3-7 播放音频
AudioSegment 对象使用 pydub 内置的 play() 方法,可以播放音频,在调试代码的时候非常方便
3-8 音量增益及降低
要调整一段音频的音量,可以直接对 AudioSegment 实例加、减对应的分贝数目即可
3-9 交叉淡化效果
使用 append() 方法,可以将多段音频对象进行合并,并添加交叉淡化的效果
PS:使用 crossfade 参数指定交叉淡化的持续时间,单位为毫秒
3-10 多声道音频
利用 from_mono_audiosegments() 函数,可以一个轨道上创建多声道音频
3-11 提取音频及导出音频
在 3-1 中实例化 AudioSegment 方式,方法同样适用于视频,即:我们可以从视频中提取 AudioSegment 音频对象
使用 AudioSegment 对象的 export(filename,format) 方法,就可以将音频保存到本地了
对搞笑类短视频,经常会采用这种剪辑手法,即:将视频尾部,对最后一段对话降低速度并重新播放一次
准备一段视频素材,下面通过 pydub 来实现它
文中仅仅对 pydub 常用的操作进行了讲解,更多骚操作可以阅读官方文档去解锁
音视频的一些常见操作都可以做成自动化,让自己从重复的剪辑工作中抽离出来
如果你觉得文章还不错,请大家 点赞、分享、留言下,因为这将是我持续输出更多优质文章的最强动力!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15