
公众号:AirPython
作者:星安果
最近一个小姐姐在后台给我留言,说自己的工作是短视频剪辑,经常需要熬夜剪片子,其中,音频处理费时费力,问我能不能利用自动化减轻她的工作
前面很多文章都使用了一款非常强大的依赖库,即:moviepy,它能非常快捷地完成视频剪辑
pydub 是一款简单、方便且强大的 Python 音频处理库
项目地址:https://github.com/jiaaro/pydub
日常音频剪辑处理工具,都可以使用它来完成,比如:提取音频、音频切断、音效处理、响度控制、声道配置、音频合成等
首先,安装依赖包
接下来,我们来聊聊 pydub 常见的操作
3-1 AudioSegment 对象
pudub 最重要的一个类是:AudioSegment
它是一个不可变的对象,代表一个音频段对象
首先,我们实例化一个 AudioSegment 对象,它内置有多种实现方式
比如,我们从本地加载一个 wav 的音频文件
3-2 裁剪某段音频
针对 AudioSegment 对象,使用中括号指定开始时间和结束时间,即可以快速提取某一段音频
PS:时间以毫秒为单位
3-3 合并音频
使用 pydub 合并多段音频非常便捷,只需要使用符号 +,将三段音频的 AudioSegment 对象加起来即可
3-4 音频常见属性
音频比较常见的属性包含:
对于音频的时长,有 2 种获取方式,即:
其他原始数据都可以从 AudioSegment 对象相应的属性中获取 :
3-5 单条音频淡入淡出
视频剪辑中,经常需要对音频做淡入淡出处理,使音效播放更加自然
比如:针对单个音频,在开头使用淡入,结束使用淡出,并指定淡入和淡出的时间
PS:单位以毫秒为单位
需要指出的是,AudioSegment 对象内置的 fade() 函数,可以更加灵活地实现淡入淡出效果
3-6 调整音频播放速度
视频剪辑中,音频速度的调整很常见
比如:在视频结尾,调整最后的画面帧为慢动作,同样需要同步调慢音频的播放速度
3-7 播放音频
AudioSegment 对象使用 pydub 内置的 play() 方法,可以播放音频,在调试代码的时候非常方便
3-8 音量增益及降低
要调整一段音频的音量,可以直接对 AudioSegment 实例加、减对应的分贝数目即可
3-9 交叉淡化效果
使用 append() 方法,可以将多段音频对象进行合并,并添加交叉淡化的效果
PS:使用 crossfade 参数指定交叉淡化的持续时间,单位为毫秒
3-10 多声道音频
利用 from_mono_audiosegments() 函数,可以一个轨道上创建多声道音频
3-11 提取音频及导出音频
在 3-1 中实例化 AudioSegment 方式,方法同样适用于视频,即:我们可以从视频中提取 AudioSegment 音频对象
使用 AudioSegment 对象的 export(filename,format) 方法,就可以将音频保存到本地了
对搞笑类短视频,经常会采用这种剪辑手法,即:将视频尾部,对最后一段对话降低速度并重新播放一次
准备一段视频素材,下面通过 pydub 来实现它
文中仅仅对 pydub 常用的操作进行了讲解,更多骚操作可以阅读官方文档去解锁
音视频的一些常见操作都可以做成自动化,让自己从重复的剪辑工作中抽离出来
如果你觉得文章还不错,请大家 点赞、分享、留言下,因为这将是我持续输出更多优质文章的最强动力!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14