京公网安备 11010802034615号
经营许可证编号:京B2-20210330
公众号:丁点帮你
作者:丁点helper
最近的生存分析系列文章都是介绍生存曲线的估计方法的,其中一篇讲了如何通过每一例患者的生存时间绘制生存曲线、估计生存率,这种方法被称为K-M法,是因为该方法最早是由Kaplan和Meier这两个人提出的;另一篇讲了如何理解生存率的95%置信区间。
回顾一下前面讲过的例子:为了解肺癌患者接受某种治疗后的生存状况,研究者收集了12名肺癌患者治疗后的住院资料。我们将12名观察对象的生存时间由小到大依次排列,可以计算每个时间点的生存概率,进而计算每个时间点的生存率。
然而在实际工作中,经常会遇到样本含量较大的随访资料,例如大型的队列研究。研究人员只会在计划好的时间点对所有研究对象进行随访(例如每年一次),而不会与每个研究对象持续保持联系,准确记录结局发生/删失发生的具体时间。
因此,某些个体的结局/删失发生在两次随访之间,研究者就不能获得其确切的生存时间,只能确定生存时间的区间。在这种情况下,可将原始资料按照生存时间分组再进行分析。
下面我们用一个例子来看看这种方法是如何实现的。
案例:为了解尘肺患者的生存期,回顾性调查了某煤矿确诊为尘肺的患者1166人,其生存时间列于下表。
与K-M法相比,这一方法中的生存时间由一个确切时间变为了一个时间区间(上表中的『确诊年数 ti』这一列)。
这种变化类似于制作频数分布表的过程,上表是对1166名患者的生存时间做了一个频数分布表,比如第一行中的数据就表示,确诊为尘肺后,寿命少于2年的有51人。教科书中把这样整理数据并估计生存率的方法叫做寿命表法。
接下来我们来一步步搞懂上面这张表。
第(1)~(4)列
在背景中讲过,本案例中患者确切的生存时间无从知晓,只能知道在哪个区间。所以要想把1166名患者的生存时间整合起来,就需要按照生存时间的区间来整理,也就是统计每个区间的人数。
你可能会问,为什么上表是以2年为一个区间呢?其实这个区间的宽度是根据随访时间和观察例数来确定的,可根据实际情况合理调整。
一般每个区间为半闭半开区间,最后一个区间终点在无穷大。本例分成了22个时间区间。
在确定分组区间之后,就要统计每个区间内的死亡人数di、删失人数ci以及期初观察人数ni。第一个时间区间的期初观察人数是所有的观察例数;下一个区间的期初观察例数按以下公式计算:
,这和之前讲过的K-M法是一样的。
第(5)~(7)列
在计算某一时间区间内的死亡概率时,需要用该区间内的死亡人数除以该区间内的观察人数,即
。但是当区间内存在删失时,这些个体并未观察至区间的终点,因此这里用期初观察人数做分母不太妥当。只有当删失数为0时,区间内有效观察人数才等于ni。
在一个特定时间区间内,我们假定删失个体发生的时间是均匀分布的,有的在区间刚开始就删失了,有的则在区间快要结束时才删失。把这些删失个体看做一个整体,相当于一半的个体在区间开始时删失,而另一半则存活到了区间结束。因此,可以认为区间内的有效观察人数为:
也被称为期初校正人数。
接下来每一个时间区间的死亡概率和生存概率也就很好计算了:
比如第三个区间(
),66名患者死亡,死亡概率就是:66/1069.5;对应的生存概率就是:1 - 66/1069.5。
上面的计算中,分母是1069.5,这个数值是怎么来的?计算过程如下:
第(8)~(9)列
接下来的一列就是生存分析中最关心的『生存率
』这一指标了。和之前讲过的一样,各时间点的生存率就是各区间生存概率的乘积。
......注意各时间区间对应的生存率应是该区间上限时间点的生存率,例如上表中第5个区间 [8, 10)对应的生存率为0.7565,意思是某患者确诊为尘肺后预测其活过10年的生存率为75.65%,而不是活过8年的生存率。
最后,再说说为什么要出现表中最后一列『生存率的标准误
』。我们这个表中每个区间的生存率都是用样本计算出来的,要想通过样本了解总体的情况,或者说想估计总体生存率的95%置信区间,就需要用到
。具体解释和计算方法在前文中有详细介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15