
作者:接地气的陈老师
来源:接地气学堂
数据分析如何助力运营,直接上干货,开整!
问题场景:某电商公司,近期通过数据发现有大量用户出现添加商品至购物车但不付款(简称:加购未购)的情况,运营已针对此情况开展工作,但领导们不满意,要求数据分析组通过用户画像模型进行加购未购客群分析,提升付款比例。假设你是该公司的数据分析师,问……
问题1:你是数据分析师,你第一件事做什么?
先思考这道问题。如果这个题目想不明白,那思考下个题目
问题2:在本场景里,领导的需求是什么?
先思考这道问题。如果这个题目想不明白,那思考下个题目
问题3:你在网站买东西,以下哪个最能让你下决心付款
思考一分钟,揭晓答案哦
1 运营优化项目,从这里做起
数据分析之所以做了没屁用,80%是脱离实际,闭门造车的结果。脱离实际,闭门造车的根源,在于做数据的人太沉迷于数据本身,忘了真正要干啥。比如本案例场景,如果扒皮抽筋的问上边三个问题,傻子都会看明白:
1、用户只会为了一个具体价格的具体商品买单,不会为ppt、代码买单。
2、领导需要的是改善运营工作,运营工作对应的是文案、活动、页面、价格。
3、改善运营工作,得先整明白人家在做什么,到底有多少空间可以改善。
4、至于算法、模型、报告、公式、甚至数字,都是寻找改善方法的一种手段。
所以第一时间,得去找运营谈这些:
1、目前针对该客群有哪些措施
2、各项措施上线时间点
3、领导具体不满意表现
注意,第一步要了解的是具体动作,至于这个动作的好坏,可以听运营解释,但是更多的要自己去分析。结合数据趋势,发现潜在机会点和问题点(如下图)
这里沟通的技巧也很重要。注意,在本场景里,领导们的不满已经是挂在脸上的,这时候在运营面前,要坚决表现出:“我是和你们一起想办法,我们一起把这个差交了”。这样才能争取到更多支持。如果摆出一副:“我牛逼,你们都是傻逼”的态度,那就等着被人各种掣肘,最后落魄收场吧 。
2 第二个关键问题
问题4:经了解,发现运营目前的做法是,按加入购物车的金额的10%派券,比如100元商品派10元,200元派20元,无差别派券。了解到这个以后,你会做……
先思考这道问题。如果这个题目想不明白,那思考下个题目
问题5:你会如何证明,你对加购未购问题产生了积极作用
先思考这道问题。如果这个题目想不明白,那思考下个题目
问题6:以下哪种情况,能证明新策略产生了效果(如下图)
思考一分钟,揭晓答案哦
3 破局,从这里开始
人的普遍心理就是:等得越久,期望值越高。特别在已经开始着急的时候,就更希望能快速见到效果。
所以在本场景里,用户画像也好,模型也好,报告也好,都对,但是首要考虑的是:多长时间见效。见效越快越好。
同时,见效的方法越简单越好。因为越复杂的方法,能参与进来的人越少,意味着自己背的锅越大。
比如上一个“超精准购买模型”,除了做数据的谁都看不懂。那最后如果效果不好,势必只有做数据的自己背锅。这又牵扯到:“写多少行代码能让顾客消费”的问题。总之,不要指望代码,要和运营并肩作战,优先丢优惠券。
可能很多同学听了:见效又快又好,就觉得难办。注意,这里“见效”也是有好几种效果的。用最简单的投入产出比概念,减少投入,增加产出,提高比率,都算有效。所以,从一开始就不要把目标定为彻底解决问题,而是不断优化效果。这样既容易交差,又能持续见成绩。
这样梳理后,思路就清晰多了:目前的全面派券是很粗暴的做法,不同商品的利润率不一样,这么简单粗暴打折,很有可能严重压缩毛利,甚至出现负毛利产品。同时,有些商品临近保质期,可以释放更多利润出来清货,有些商品本身利润很高,有空间再释放出来。这样梳理完,第一阶段的行动就很清晰了(如下图)
4 迭代,持续优化效果
问题7:以下两个选择,先做哪一个?
注意,本场景,是领导已经不满意了,都找到外部门了。这种情况下,如果上来就说:“我们还要追加XXX万投入”,要么本直接喷回来,要么领导们期望值会被吊得更高,以为追加以后效果无敌好。
这两种情况都是在给自己挖坑!所以最好先从砍成本的角度入手,先砍掉一个明显负产出的补贴,释放营销费用;之后再做一些临期产品、清库存产品;之后再拿释放出来的费用贴高利润产品,把加购转化率拉高。
之后还可以持续迭代,比如高利润产品的转化率已经提高的前提下,可以做价格弹性测试,适当减少补贴,再释放一波营销费用;单品做的差不多了,可以拿释放出的利润做满减、或者交叉销售。
这些还都是单纯的在价格上做文章,数据计算难度小,又容易见效。毕竟给的是真金白银的优惠券。
这样折腾下来,不但能见效,而且能拖很长时间。每个月试点,迭代四五次,至少也能拖个半年。这半年宝贵的时间,可以拿来为“人工智能算法推荐”“大数据用户画像洞察”做数据积累,也能争取到充足的时间训练模型。
在价格玩的差不多的时候,就能自然续上,效果持续优化,人人开心。比一开始憋大招,憋半年然后屁用,没有灰溜溜的走人,要强的多(如下图)。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29