京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:豌豆花下猫
来源:Python猫
或许你是一个初入门Python的小白,完全不知道PEP是什么。又或许你是个学会了Python的熟手,见过几个PEP,却不知道这玩意背后是什么。那正好,本文将系统性地介绍一下PEP,与大家一起加深对PEP的了解。
目前,国内各类教程不可胜数,虽然或多或少会提及PEP,但笼统者多、局限于某个PEP者多,能够详细而全面地介绍PEP的文章并不多。
本文的目的是:尽量全面地介绍PEP是什么,告诉大家为什么要去阅读PEP,以及列举了一些我认为是必读的PEP,最后,则是搜罗了几篇PEP的中文翻译,希望能为Python学习资料的汉化,做点抛砖引玉的贡献。
PEP是什么?
PEP的全称是python Enhancement Proposals,其中Enhancement是增强改进的意思,Proposals则可译为提案或建议书,所以合起来,比较常见的翻译是Python增强提案或Python改进建议书。
我个人倾向于前一个翻译,因为它更贴切。Python核心开发者主要通过邮件列表讨论问题、提议、计划等,PEP通常是汇总了多方信息,经过了部分核心开发者review和认可,最终形成的正式文档,起到了对外公示的作用,所以我认为翻译成“提案”更恰当。
PEP的官网是:https://www.python.org/dev/peps/,这也就是PEP 0 的地址。其它PEP的地址是将编号拼接在后面,例如:https://www.python.org/dev/peps/pep-0020/ 就是PEP 20 的链接,以此类推。
第一个PEP诞生于2000年,现在正好是18岁成年。到目前为止,它拥有478个“兄弟姐妹”。
官方将PEP分成三类:
I - Informational PEP
P - Process PEP
S - Standards Track PEP
其含义如下:
信息类:这类PEP就是提供信息,有告知类信息,也有指导类信息等等。例如PEP 20(The Zen of Python,即著名的Python之禅)、PEP 404 (Python 2.8 Un-release Schedule,即宣告不会有Python2.8版本)。
流程类:这类PEP主要是Python本身之外的周边信息。例如PEP 1(PEP Purpose and Guidelines,即关于PEP的指南)、PEP 347(Migrating the Python CVS to Subversion,即关于迁移Python代码仓)。
标准类:这类PEP主要描述了Python的新功能和新实践(implementation),是数量最多的提案。例如我之前推文《详解Python拼接字符串的七种方式》提到过的f-string方式,它出自PEP 498(Literal String Interpolation,字面字符串插值)。
每个PEP最初都是一个草案(Draft),随后会经历一个过程,因此也就出现了不同的状态。以下是一个流程图:
PEP process flow diagram
A – Accepted (Standards Track only) or Active proposal 已接受(仅限标准跟踪)或有效提案
D – Deferred proposal 延期提案
F – Final proposal 最终提案
P – Provisional proposal 暂定提案
R – Rejected proposal 被否决的提案
S – Superseded proposal 被取代的提案
W – Withdrawn proposal 撤回提案
在PEP 0(Index of Python Enhancement Proposals (PEPs))里,官方列举了所有的PEP,你可以按序号、按类型以及按状态进行检索。而在PEP 1(PEP Purpose and Guidelines)里,官方详细说明了PEP的意图、如何提交PEP、如何修复和更新PEP、以及PEP评审的机制等等。
为什么要读PEP?
无论你是刚入门python的小白、有一定经验的从业人员,还是资深的黑客,都应该阅读Python增强提案。
依我之见,阅读PEP至少有如下好处:
(1)了解Python有哪些特性,它们与其它语言特性的差异,为什么要设计这些特性,是怎么设计的,怎样更好地运用它们;
(2)跟进社区动态,获知业内的最佳实践方案,调整学习方向,改进工作业务的内容;
(3)参与热点议题讨论,或者提交新的PEP,为Python社区贡献力量。
说到底,学会用Python编程,只是掌握了皮毛。PEP提案是深入了解Python的途径,是真正掌握Python语言的一把钥匙,也是得心应手使用Python的一本指南。
哪些PEP是必读的?
如前所述,PEP提案已经累积产生了478个,我们并不需要对每个PEP都熟知,没有必要。下面,我列举了一些PEP,推荐大家一读:
PEP 0 -- Index of Python Enhancement Proposals
PEP 7 -- Style Guide for C Code,C扩展
PEP 8 -- Style Guide for Python Code,编码规范(必读)
PEP 20 -- The Zen of Python,Python之禅
PEP 202 -- List Comprehensions,列表生成式
PEP 274 -- Dict Comprehensions,字典生成式
PEP 234 -- Iterators,迭代器
PEP 257 -- Docstring Conventions,文档注释规范
PEP 279 -- The enumerate() built-in function,enumerate枚举
PEP 282 -- A Logging System,日志模块
PEP 285 -- Adding a bool type,布尔值(建议阅读《Python对象的身份迷思:从全体公民到万物皆数》)
PEP 289 -- Generator Expressions,生成器表达式
PEP 318 -- Decorators for Functions and Methods,装饰器
PEP 342 -- Coroutines via Enhanced Generators,协程
PEP 343 -- The "with" Statement,with语句
PEP 380 -- Syntax for Delegating to a Subgenerator,yield from语法
PEP 405 -- Python Virtual Environments,虚拟环境
PEP 471 -- os.scandir() function,遍历目录
PEP 484 -- Type Hints,类型约束
PEP 492 -- Coroutines with async and await syntax,async/await语法
PEP 498 -- Literal String Interpolation Python,字符串插值
PEP 525 -- Asynchronous Generators,异步生成器
PEP 572 -- Assignment Expressions,表达式内赋值(最争议)
PEP 3105 -- Make print a function,print改为函数
PEP 3115 -- Metaclasses in Python 3000,元类
PEP 3120 -- Using UTF-8 as the default source encoding
PEP 3333 -- Python Web Server Gateway Interface v1.0.1,Web开发
PEP 8000 -- Python Language Governance Proposal Overview,GvR老爹推出决策层后,事关新决策方案
对PEP的贡献
虽无确切数据作证,我国Python开发者的数量应该比任何国家都多。然而,纵观PEP 0 里面列举的200多个PEP作者,我只看到了一个像是汉语拼音的国人名字(不排除看漏,或者使用了英文名的)。反差真是太大了。
我特别希望,国内的Python黑客们的名字,能越来越多地出现在那个列表里,出现在Python核心开发者的列表里。
此外,关于对PEP的贡献,还有一种很有效的方式,就是将PEP翻译成中文,造福国内的python学习社区。经过一番搜索,我还没有看到系统性翻译PEP的项目,只找到了零星的对于某个PEP的翻译。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06