京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:豌豆花下猫
来源:Python猫
或许你是一个初入门Python的小白,完全不知道PEP是什么。又或许你是个学会了Python的熟手,见过几个PEP,却不知道这玩意背后是什么。那正好,本文将系统性地介绍一下PEP,与大家一起加深对PEP的了解。
目前,国内各类教程不可胜数,虽然或多或少会提及PEP,但笼统者多、局限于某个PEP者多,能够详细而全面地介绍PEP的文章并不多。
本文的目的是:尽量全面地介绍PEP是什么,告诉大家为什么要去阅读PEP,以及列举了一些我认为是必读的PEP,最后,则是搜罗了几篇PEP的中文翻译,希望能为Python学习资料的汉化,做点抛砖引玉的贡献。
PEP是什么?
PEP的全称是python Enhancement Proposals,其中Enhancement是增强改进的意思,Proposals则可译为提案或建议书,所以合起来,比较常见的翻译是Python增强提案或Python改进建议书。
我个人倾向于前一个翻译,因为它更贴切。Python核心开发者主要通过邮件列表讨论问题、提议、计划等,PEP通常是汇总了多方信息,经过了部分核心开发者review和认可,最终形成的正式文档,起到了对外公示的作用,所以我认为翻译成“提案”更恰当。
PEP的官网是:https://www.python.org/dev/peps/,这也就是PEP 0 的地址。其它PEP的地址是将编号拼接在后面,例如:https://www.python.org/dev/peps/pep-0020/ 就是PEP 20 的链接,以此类推。
第一个PEP诞生于2000年,现在正好是18岁成年。到目前为止,它拥有478个“兄弟姐妹”。
官方将PEP分成三类:
I - Informational PEP
P - Process PEP
S - Standards Track PEP
其含义如下:
信息类:这类PEP就是提供信息,有告知类信息,也有指导类信息等等。例如PEP 20(The Zen of Python,即著名的Python之禅)、PEP 404 (Python 2.8 Un-release Schedule,即宣告不会有Python2.8版本)。
流程类:这类PEP主要是Python本身之外的周边信息。例如PEP 1(PEP Purpose and Guidelines,即关于PEP的指南)、PEP 347(Migrating the Python CVS to Subversion,即关于迁移Python代码仓)。
标准类:这类PEP主要描述了Python的新功能和新实践(implementation),是数量最多的提案。例如我之前推文《详解Python拼接字符串的七种方式》提到过的f-string方式,它出自PEP 498(Literal String Interpolation,字面字符串插值)。
每个PEP最初都是一个草案(Draft),随后会经历一个过程,因此也就出现了不同的状态。以下是一个流程图:
PEP process flow diagram
A – Accepted (Standards Track only) or Active proposal 已接受(仅限标准跟踪)或有效提案
D – Deferred proposal 延期提案
F – Final proposal 最终提案
P – Provisional proposal 暂定提案
R – Rejected proposal 被否决的提案
S – Superseded proposal 被取代的提案
W – Withdrawn proposal 撤回提案
在PEP 0(Index of Python Enhancement Proposals (PEPs))里,官方列举了所有的PEP,你可以按序号、按类型以及按状态进行检索。而在PEP 1(PEP Purpose and Guidelines)里,官方详细说明了PEP的意图、如何提交PEP、如何修复和更新PEP、以及PEP评审的机制等等。
为什么要读PEP?
无论你是刚入门python的小白、有一定经验的从业人员,还是资深的黑客,都应该阅读Python增强提案。
依我之见,阅读PEP至少有如下好处:
(1)了解Python有哪些特性,它们与其它语言特性的差异,为什么要设计这些特性,是怎么设计的,怎样更好地运用它们;
(2)跟进社区动态,获知业内的最佳实践方案,调整学习方向,改进工作业务的内容;
(3)参与热点议题讨论,或者提交新的PEP,为Python社区贡献力量。
说到底,学会用Python编程,只是掌握了皮毛。PEP提案是深入了解Python的途径,是真正掌握Python语言的一把钥匙,也是得心应手使用Python的一本指南。
哪些PEP是必读的?
如前所述,PEP提案已经累积产生了478个,我们并不需要对每个PEP都熟知,没有必要。下面,我列举了一些PEP,推荐大家一读:
PEP 0 -- Index of Python Enhancement Proposals
PEP 7 -- Style Guide for C Code,C扩展
PEP 8 -- Style Guide for Python Code,编码规范(必读)
PEP 20 -- The Zen of Python,Python之禅
PEP 202 -- List Comprehensions,列表生成式
PEP 274 -- Dict Comprehensions,字典生成式
PEP 234 -- Iterators,迭代器
PEP 257 -- Docstring Conventions,文档注释规范
PEP 279 -- The enumerate() built-in function,enumerate枚举
PEP 282 -- A Logging System,日志模块
PEP 285 -- Adding a bool type,布尔值(建议阅读《Python对象的身份迷思:从全体公民到万物皆数》)
PEP 289 -- Generator Expressions,生成器表达式
PEP 318 -- Decorators for Functions and Methods,装饰器
PEP 342 -- Coroutines via Enhanced Generators,协程
PEP 343 -- The "with" Statement,with语句
PEP 380 -- Syntax for Delegating to a Subgenerator,yield from语法
PEP 405 -- Python Virtual Environments,虚拟环境
PEP 471 -- os.scandir() function,遍历目录
PEP 484 -- Type Hints,类型约束
PEP 492 -- Coroutines with async and await syntax,async/await语法
PEP 498 -- Literal String Interpolation Python,字符串插值
PEP 525 -- Asynchronous Generators,异步生成器
PEP 572 -- Assignment Expressions,表达式内赋值(最争议)
PEP 3105 -- Make print a function,print改为函数
PEP 3115 -- Metaclasses in Python 3000,元类
PEP 3120 -- Using UTF-8 as the default source encoding
PEP 3333 -- Python Web Server Gateway Interface v1.0.1,Web开发
PEP 8000 -- Python Language Governance Proposal Overview,GvR老爹推出决策层后,事关新决策方案
对PEP的贡献
虽无确切数据作证,我国Python开发者的数量应该比任何国家都多。然而,纵观PEP 0 里面列举的200多个PEP作者,我只看到了一个像是汉语拼音的国人名字(不排除看漏,或者使用了英文名的)。反差真是太大了。
我特别希望,国内的Python黑客们的名字,能越来越多地出现在那个列表里,出现在Python核心开发者的列表里。
此外,关于对PEP的贡献,还有一种很有效的方式,就是将PEP翻译成中文,造福国内的python学习社区。经过一番搜索,我还没有看到系统性翻译PEP的项目,只找到了零星的对于某个PEP的翻译。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23