
作者:豌豆花下猫
来源:Python猫
或许你是一个初入门Python的小白,完全不知道PEP是什么。又或许你是个学会了Python的熟手,见过几个PEP,却不知道这玩意背后是什么。那正好,本文将系统性地介绍一下PEP,与大家一起加深对PEP的了解。
目前,国内各类教程不可胜数,虽然或多或少会提及PEP,但笼统者多、局限于某个PEP者多,能够详细而全面地介绍PEP的文章并不多。
本文的目的是:尽量全面地介绍PEP是什么,告诉大家为什么要去阅读PEP,以及列举了一些我认为是必读的PEP,最后,则是搜罗了几篇PEP的中文翻译,希望能为Python学习资料的汉化,做点抛砖引玉的贡献。
PEP是什么?
PEP的全称是python Enhancement Proposals,其中Enhancement是增强改进的意思,Proposals则可译为提案或建议书,所以合起来,比较常见的翻译是Python增强提案或Python改进建议书。
我个人倾向于前一个翻译,因为它更贴切。Python核心开发者主要通过邮件列表讨论问题、提议、计划等,PEP通常是汇总了多方信息,经过了部分核心开发者review和认可,最终形成的正式文档,起到了对外公示的作用,所以我认为翻译成“提案”更恰当。
PEP的官网是:https://www.python.org/dev/peps/,这也就是PEP 0 的地址。其它PEP的地址是将编号拼接在后面,例如:https://www.python.org/dev/peps/pep-0020/ 就是PEP 20 的链接,以此类推。
第一个PEP诞生于2000年,现在正好是18岁成年。到目前为止,它拥有478个“兄弟姐妹”。
官方将PEP分成三类:
I - Informational PEP
P - Process PEP
S - Standards Track PEP
其含义如下:
信息类:这类PEP就是提供信息,有告知类信息,也有指导类信息等等。例如PEP 20(The Zen of Python,即著名的Python之禅)、PEP 404 (Python 2.8 Un-release Schedule,即宣告不会有Python2.8版本)。
流程类:这类PEP主要是Python本身之外的周边信息。例如PEP 1(PEP Purpose and Guidelines,即关于PEP的指南)、PEP 347(Migrating the Python CVS to Subversion,即关于迁移Python代码仓)。
标准类:这类PEP主要描述了Python的新功能和新实践(implementation),是数量最多的提案。例如我之前推文《详解Python拼接字符串的七种方式》提到过的f-string方式,它出自PEP 498(Literal String Interpolation,字面字符串插值)。
每个PEP最初都是一个草案(Draft),随后会经历一个过程,因此也就出现了不同的状态。以下是一个流程图:
PEP process flow diagram
A – Accepted (Standards Track only) or Active proposal 已接受(仅限标准跟踪)或有效提案
D – Deferred proposal 延期提案
F – Final proposal 最终提案
P – Provisional proposal 暂定提案
R – Rejected proposal 被否决的提案
S – Superseded proposal 被取代的提案
W – Withdrawn proposal 撤回提案
在PEP 0(Index of Python Enhancement Proposals (PEPs))里,官方列举了所有的PEP,你可以按序号、按类型以及按状态进行检索。而在PEP 1(PEP Purpose and Guidelines)里,官方详细说明了PEP的意图、如何提交PEP、如何修复和更新PEP、以及PEP评审的机制等等。
为什么要读PEP?
无论你是刚入门python的小白、有一定经验的从业人员,还是资深的黑客,都应该阅读Python增强提案。
依我之见,阅读PEP至少有如下好处:
(1)了解Python有哪些特性,它们与其它语言特性的差异,为什么要设计这些特性,是怎么设计的,怎样更好地运用它们;
(2)跟进社区动态,获知业内的最佳实践方案,调整学习方向,改进工作业务的内容;
(3)参与热点议题讨论,或者提交新的PEP,为Python社区贡献力量。
说到底,学会用Python编程,只是掌握了皮毛。PEP提案是深入了解Python的途径,是真正掌握Python语言的一把钥匙,也是得心应手使用Python的一本指南。
哪些PEP是必读的?
如前所述,PEP提案已经累积产生了478个,我们并不需要对每个PEP都熟知,没有必要。下面,我列举了一些PEP,推荐大家一读:
PEP 0 -- Index of Python Enhancement Proposals
PEP 7 -- Style Guide for C Code,C扩展
PEP 8 -- Style Guide for Python Code,编码规范(必读)
PEP 20 -- The Zen of Python,Python之禅
PEP 202 -- List Comprehensions,列表生成式
PEP 274 -- Dict Comprehensions,字典生成式
PEP 234 -- Iterators,迭代器
PEP 257 -- Docstring Conventions,文档注释规范
PEP 279 -- The enumerate() built-in function,enumerate枚举
PEP 282 -- A Logging System,日志模块
PEP 285 -- Adding a bool type,布尔值(建议阅读《Python对象的身份迷思:从全体公民到万物皆数》)
PEP 289 -- Generator Expressions,生成器表达式
PEP 318 -- Decorators for Functions and Methods,装饰器
PEP 342 -- Coroutines via Enhanced Generators,协程
PEP 343 -- The "with" Statement,with语句
PEP 380 -- Syntax for Delegating to a Subgenerator,yield from语法
PEP 405 -- Python Virtual Environments,虚拟环境
PEP 471 -- os.scandir() function,遍历目录
PEP 484 -- Type Hints,类型约束
PEP 492 -- Coroutines with async and await syntax,async/await语法
PEP 498 -- Literal String Interpolation Python,字符串插值
PEP 525 -- Asynchronous Generators,异步生成器
PEP 572 -- Assignment Expressions,表达式内赋值(最争议)
PEP 3105 -- Make print a function,print改为函数
PEP 3115 -- Metaclasses in Python 3000,元类
PEP 3120 -- Using UTF-8 as the default source encoding
PEP 3333 -- Python Web Server Gateway Interface v1.0.1,Web开发
PEP 8000 -- Python Language Governance Proposal Overview,GvR老爹推出决策层后,事关新决策方案
对PEP的贡献
虽无确切数据作证,我国Python开发者的数量应该比任何国家都多。然而,纵观PEP 0 里面列举的200多个PEP作者,我只看到了一个像是汉语拼音的国人名字(不排除看漏,或者使用了英文名的)。反差真是太大了。
我特别希望,国内的Python黑客们的名字,能越来越多地出现在那个列表里,出现在Python核心开发者的列表里。
此外,关于对PEP的贡献,还有一种很有效的方式,就是将PEP翻译成中文,造福国内的python学习社区。经过一番搜索,我还没有看到系统性翻译PEP的项目,只找到了零星的对于某个PEP的翻译。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10