京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小伍哥
来源:AI入门学习
一、应用概述
最近做一个项目,发现很多场景,把汉字转换成拼音,然后进行深度学习分类,能够取得非常不错的效果,在做内容识别,特别是涉及到同音字的时候,转换成拼音就显得特别重要。比如垃圾广告识别:公众号、工仲号、躬总号,公众號、微信、威信、维伈.........,pypinyin是我用的一个比较好用的Python包,给大家分享下,当然,在其他很多场景也是可以使用的,排序、检索等等场合。
二、有关文档
GitHub: https://github.com/mozillazg/python-pinyin
文 档:https://pypinyin.readthedocs.io/zh_CN/master/
PyPi :https://pypi.org/project/pypinyin/
三、关于安装
#可以使用 pip 进行安装 pip install pypinyin #easy_install 安装 easy_install pypinyin #源码安装 python setup.py install
四、核心函数
1、pypinyin.pinyin
语法:pypinyin.pinyin(hans, style=Style.TONE, heteronym=False, errors='default', strict=True)
功能:将汉字转换为拼音,返回汉字的拼音列表。
参数:
from pypinyin import pinyin, Style
import pypinyin
#普通模式
pinyin('中心')
[['zhōng'], ['xīn']]
pinyin('公众号')
[['gōng'], ['zhòng'], ['hào']]
# 启用多音字模式
pinyin('中心', heteronym=True)
[['zhōng', 'zhòng'], ['xīn']]
# 设置拼音风格
pinyin('中心', style=Style.NORMAL )
#普通风格
[['zhong'], ['xin']]
pinyin('中心', style=Style.FIRST_LETTER)
[['z'], ['x']]
pinyin('中心', style=Style.TONE2)
[['zho1ng'], ['xi1n']]
pinyin('中心', style=Style.TONE3)
[['zhong1'], ['xin1']]
pinyin('中心', style=Style.CYRILLIC)
#汉语拼音与俄语字母对照风格
[['чжун1'], ['синь1']]
2、pypinyin.lazy_pinyin
语法:pypinyin.lazy_pinyin(hans, style=Style, errors='default', strict=True)
功能:将汉字转换为拼音,返回不包含多音字结果的拼音列表,与 pinyin() 的区别是返回的拼音是个字符串, 并且每个字只包含一个读音
参数:
from pypinyin import lazy_pinyin, Style
import pypinyin
lazy_pinyin('中心')
['zhong', 'xin']lazy_pinyin('微信公众号')['wei', 'xin', 'gong', 'zhong', 'hao']
lazy_pinyin('中心', style=Style.TONE)
['zhōng', 'xīn']
lazy_pinyin('中心', style=Style.FIRST_LETTER)
['z', 'x']
lazy_pinyin('中心', style=Style.TONE2)
['zho1ng', 'xi1n']
lazy_pinyin('中心', style=Style.CYRILLIC)
['чжун1', 'синь1']
3、pypinyin.slug
功能:将汉字转换为拼音,然后生成 slug 字符串,简单说就是自定义分隔符
语法:pypinyin.slug(hans , style=Style, heteronym=False, separator='-', errors='default', strict=True)
import pypinyin
from pypinyin import Style
pypinyin.slug('我是中国人')
'wo-shi-zhong-guo-ren'
pypinyin.slug('我是中国人', separator=' ')
'wo shi zhong guo ren'
pypinyin.slug('中国人2020雄起', separator=' ')
#遇到数字等非汉字不注音'zhong guo ren 2020 xiong qi'
pypinyin.slug('中国人2020雄起', style=Style.FIRST_LETTER)
'z-g-r-2020-x-q'
pypinyin.slug('我是中国人', style=Style.CYRILLIC)
'во3-ши4-чжун1-го2-жэнь'
4、 pypinyin.load_single_dict
功能:载入用户自定义的单字拼音库
语法: pypinyin.load_single_dict(pinyin_dict, style='default')
参数:
5、 pypinyin.load_phrases_dict
功能:载入用户自定义的词语拼音库
语法: pypinyin.load_phrases_dict(phrases_dict, style='default')
参数:
五、一个案例
假如需要找出一个垃圾评价的相似样本,用汉语相似性远远小于拼音,这个时候,拼音就能发挥很大的优势。
当然转换成拼音后,把每个音节当一个词,进行深度学习,效果也是非常好的。
S1 = '加公众号:小优惠,领券,便宜购买'
S2 = '伽工仲号:小优惠,伶绻,便宜购买'
#汉语相似
simi_1 = len(set(S1).intersection(set(S2)))/len(set(S1).union(set(S2)))#相似不懂的可以看我前面集合的文章
simi_1
0.5
#转换成拼音后显示
S1 = lazy_pinyin(S1)
S2 = lazy_pinyin(S2)
simi_2 = len(set(S1).intersection(set(S2)))/len(set(S1).union(set(S2)))
simi_2
0.875
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07