
作者:小伍哥
来源:AI入门学习
一、应用概述
最近做一个项目,发现很多场景,把汉字转换成拼音,然后进行深度学习分类,能够取得非常不错的效果,在做内容识别,特别是涉及到同音字的时候,转换成拼音就显得特别重要。比如垃圾广告识别:公众号、工仲号、躬总号,公众號、微信、威信、维伈.........,pypinyin是我用的一个比较好用的Python包,给大家分享下,当然,在其他很多场景也是可以使用的,排序、检索等等场合。
二、有关文档
GitHub: https://github.com/mozillazg/python-pinyin
文 档:https://pypinyin.readthedocs.io/zh_CN/master/
PyPi :https://pypi.org/project/pypinyin/
三、关于安装
#可以使用 pip 进行安装 pip install pypinyin #easy_install 安装 easy_install pypinyin #源码安装 python setup.py install
四、核心函数
1、pypinyin.pinyin
语法:pypinyin.pinyin(hans, style=Style.TONE, heteronym=False, errors='default', strict=True)
功能:将汉字转换为拼音,返回汉字的拼音列表。
参数:
from pypinyin import pinyin, Style import pypinyin #普通模式 pinyin('中心') [['zhōng'], ['xīn']] pinyin('公众号') [['gōng'], ['zhòng'], ['hào']] # 启用多音字模式 pinyin('中心', heteronym=True) [['zhōng', 'zhòng'], ['xīn']] # 设置拼音风格 pinyin('中心', style=Style.NORMAL ) #普通风格 [['zhong'], ['xin']] pinyin('中心', style=Style.FIRST_LETTER) [['z'], ['x']] pinyin('中心', style=Style.TONE2) [['zho1ng'], ['xi1n']] pinyin('中心', style=Style.TONE3) [['zhong1'], ['xin1']] pinyin('中心', style=Style.CYRILLIC) #汉语拼音与俄语字母对照风格 [['чжун1'], ['синь1']]
2、pypinyin.lazy_pinyin
语法:pypinyin.lazy_pinyin(hans, style=Style, errors='default', strict=True)
功能:将汉字转换为拼音,返回不包含多音字结果的拼音列表,与 pinyin() 的区别是返回的拼音是个字符串, 并且每个字只包含一个读音
参数:
from pypinyin import lazy_pinyin, Style import pypinyin lazy_pinyin('中心') ['zhong', 'xin']lazy_pinyin('微信公众号')['wei', 'xin', 'gong', 'zhong', 'hao'] lazy_pinyin('中心', style=Style.TONE) ['zhōng', 'xīn'] lazy_pinyin('中心', style=Style.FIRST_LETTER) ['z', 'x'] lazy_pinyin('中心', style=Style.TONE2) ['zho1ng', 'xi1n'] lazy_pinyin('中心', style=Style.CYRILLIC) ['чжун1', 'синь1']
3、pypinyin.slug
功能:将汉字转换为拼音,然后生成 slug 字符串,简单说就是自定义分隔符
语法:pypinyin.slug(hans , style=Style, heteronym=False, separator='-', errors='default', strict=True)
import pypinyin from pypinyin import Style pypinyin.slug('我是中国人') 'wo-shi-zhong-guo-ren' pypinyin.slug('我是中国人', separator=' ') 'wo shi zhong guo ren' pypinyin.slug('中国人2020雄起', separator=' ') #遇到数字等非汉字不注音'zhong guo ren 2020 xiong qi' pypinyin.slug('中国人2020雄起', style=Style.FIRST_LETTER) 'z-g-r-2020-x-q' pypinyin.slug('我是中国人', style=Style.CYRILLIC) 'во3-ши4-чжун1-го2-жэнь'
4、 pypinyin.load_single_dict
功能:载入用户自定义的单字拼音库
语法: pypinyin.load_single_dict(pinyin_dict, style='default')
参数:
5、 pypinyin.load_phrases_dict
功能:载入用户自定义的词语拼音库
语法: pypinyin.load_phrases_dict(phrases_dict, style='default')
参数:
五、一个案例
假如需要找出一个垃圾评价的相似样本,用汉语相似性远远小于拼音,这个时候,拼音就能发挥很大的优势。
当然转换成拼音后,把每个音节当一个词,进行深度学习,效果也是非常好的。
S1 = '加公众号:小优惠,领券,便宜购买'
S2 = '伽工仲号:小优惠,伶绻,便宜购买'
#汉语相似
simi_1 = len(set(S1).intersection(set(S2)))/len(set(S1).union(set(S2)))#相似不懂的可以看我前面集合的文章
simi_1
0.5
#转换成拼音后显示
S1 = lazy_pinyin(S1)
S2 = lazy_pinyin(S2)
simi_2 = len(set(S1).intersection(set(S2)))/len(set(S1).union(set(S2)))
simi_2
0.875
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03