
正在利用这些海量的数据来寻求更多的东西的产业是酒店业。在过去,酒店和技术从来没有互相补充,因为酒店从业者一直关注有形的东西。他们更愿意花时间和资源在定义业务区域上,如提高一个地方的氛围,拓宽菜单的选择范围,提高服务交付的质量,而不是专注于技术和大数据。其结果是,企业想提供的和客户想要的之间的距离变大了。因此,由于缺乏对客户喜好的了解,酒店业从业者使得企业效率低下并且盈利处于低水平之上。
为了克服这些问题,酒店业开始以一种很显著的方式使用技术,特别是大数据。大数据是关于识别模式和关系的,这些关系存在于可以确定未来趋势的数据和变化的客户喜好之间。有了这些了解,企业可以使得自己的现有产品或添加新的来满足这些客户的期望,这反过来将推动需求,并使得利润增加。
具体地讲,大数据可通过以下方式来提高客户满意度,从而能够提高企业的整体效率和收益。
个性化体验
大数据有充每次给客户提供个性化旅行体验的潜力。当一个企业知道某个特定的客户想要的什么时,它就可以更改其相应的服务。例如,如果一个餐饮企业基于老主顾过去的饮食习惯和他们的社交媒体更新知道老主顾想要什么,那么它就可以提供这样的菜单选项。特别是当客户有饮食禁忌时,如素食主义者或犹太教,这些信息就会派上用场,
这样的策略在许多方面被证明可以为公司带来经济利益。首先,客户对服务很满意,那么他们肯定会再次光顾生意。其次,更重要的是,这个客户很可能会向朋友和家人推荐这个地方。该建议将带来更多的客户,而公司则不用在营销或广告上花费任何金钱。
创造合适的产品和服务
大数据可以给公司对于他们的产品和服务提供更好的方向感。他们会比以前知道哪些产品将成为热点,使他们能相应地规划自己的业务。例如,它是不难预料,在热天人们会喝啤酒或吃冰淇淋,但了解他们喜欢什么啤酒以及什么口味的冰淇淋是很有益的,使企业能够储存足够数量的合适产品。这个信息就是大数据可以给企业的东西。在更广泛的层面上,大数据有助于最大限度地优化品牌的战术决策并给旅游公司提供更好的控制力。
竞争优势
大数据很可能成为帮助企业获得竞争优势的关键因素。在这个意义上说,大数据工具将是主要的差异化要素,因为所有的公司,无论是新的还是老的,都有机会获得相同的数据量。因此,能够创新和捕捉最深的见解的公司将超越其他公司。
在另一个领域,大数据可以帮助定价。公司将能够预见发展趋势,并调整其产品售价,以使他们的服务对客户更具吸引力。一个典型的例子是租金成本。例如,当船租赁公司,知道更多的人将要在夏季前往它所在的城市,大部分旅客可以负担得起的价格,其竞争对手的价格和其产品的预计需求,那么他们就可以定一个能够吸引客户的价格,并且与此同时又使得公司有利可图。这给了企业竞争优势,因为它的定价决策是有相关数据支持的,这种相关数据能够以比以往任何时候都高的精度来预测客户的消费行为。
谨慎的做法
尽管使用大数据能够带来好处,但企业应该注意一些灰色地带。首先,过度个性化可能会适得其反,因为这将被某些人看作是侵犯隐私权。因此,企业应该利用大数据来提供个性化的体验,但不应该过度的这么做。例如,记者登上飞大西洋航线的飞机,很多东西让她大吃一惊,其中她相邻座位的两名记者竟和她前往同一会议。利用大数据,该机设计了座位安排,使得所有的三名乘客有机会在会议之前就知道对方。在另一方面,只要一个老顾客进来,餐厅服务员就会拿出顾客喜欢的饮料。选择也会基于客户的历史订单推出。虽然这些“服务”,一些人是可以理解的,但是对于想在本次计划尝试新鲜事物的顾客来说,这将是非常不愉快的。
其次,大数据本身并没有多大用处,除非企业以创新的方式使用它来提高他们的业务水准。正是这种创新,给了企业竞争优势,使得产品或服务对用户更有吸引力。
最后,企业应该使用正确的大数据工具以最大限度地利用它。实时分析和深刻的洞察力,将提供真正驾驭它的好处必不可少的新模式。
总之,通过提供新的模式和见解,大数据将对对酒店业产生深远的积极影响。有了这个新的信息,企业能够更好地提供个性化的服务,提升客户满意度,提高运营效率,获得竞争优势,所有这一切最终将使企业获得更高的利润。然而,有一些需要小心,特别是在隐私和侵犯客户的方面。当这些问题得到解决,大数据成为企业和旅客的游戏改变者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01