京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据告诉你:"推倒"式拉票,赢不了新财富_数据分析师
推倒几个基金经理,能赢新财富吗?要入榜新财富,平均需要获得至少720张选票支持。我们且以2013年第十一届新财富最佳分析师评选为例进行分析。
“为了xcf,今年我已经和俩人上过床了,这才是刚刚开始。夜深人静总会想起那个刚入行时的小姑娘,懵懂充满着向往,一去不复返。”这是今年匿名社交软件无秘上的爆料,比这更让人心酸的是,第一条评论说 “靠得住吗?保证会投吗?”
就算投了,这样拉票,也没有用啊,亲!
2013年的评选中,得票分数最高的是国泰君安证券[微博]房地产研究小组(孙建平、李品科、丁明、温阳),他们这个团队的得分高达15457.74。
这是一个相当惊人的数字。在去年的参选规则中,一张投票对应的最高权重是3,一张选票最多只能给孙建平贡献15分(投其第一名计5分,第二名4分,第三名3分,第四名2分,第五名1分)。而一万五千多分意味着什么呢?如果按所有投孙建平的都是评他为第一名、且权重为3来算的话,就是至少有1030张票投给了他。这当然是最极端的情形,如果按每张票平均权重2、且都投第一名来计算,也有1545张票投给他。实际投票的情形要复杂得多,由于各张票的权重不同,投票打的名次不一,但最保守的估计,也有不低于1545张选票选择了孙建平。
做出这个集体决定的,是高度分散的市场投资者。在经过严格审核之后,2013年新财富发放了近2400张最佳分析师选票,分布在多达600余家机构中,包括77家公募基金管理公司、全国社保基金理事会、99家保险/保险资产管理公司、74家证券公司、136家私募基金、22家银行、23家信托公司、23家财务公司、122家QFII、35家海外投资机构。
孙建平的成功,是在2400张选票中,争取到了不低于1545张投票,他的得票率超过64%,而2013年房地产行业的整体得票率是84%,也就是说,给房地产行业打分的选票中,有至少76%的选票选了孙建平。而且这一数字还是保守估计。
都说入榜新财富就能一夜暴富,为什么?因为入榜者的观点能覆盖并影响到市场绝大部分资金掌舵者,根据统计,这些机构投资者管理的资产规模合计达数万亿元。从公募基金到私募基金、证券、信托、财务公司等各种团体,如果孙建平不是切切实实为他们创造了正价值,他们会自发做出这样高度统一的选择吗?
有评论认为,新财富是资本圈的奥斯卡,也不乏“新财富是国内最公正,最类似于美国大选的民主选票”的褒奖。民主的基础在于投票的群体够资格、样本数量够大,是他们一票一票,选出了市场的宠儿,并清除纠正了非正当拉票的噪音。
2014年的新财富最佳分析师评选,投票群体进一步扩容,870余家机构的2700多位投资者投票,且由新财富酷鱼APP投出,进一步杜绝了“搞定一个老总,就能拿到几十张选票”的可能。没有什么力量,能操纵这个市场。
每年新财富投票季,最不缺的,就是各种拉票秀。娱人娱己,小编其实天生“看热闹不嫌事儿大”,碰到平时没日没夜做研究、到了收获季节吆喝一声“请为我投上一票”的分析师,觉得那都是光明正大,值得大大点赞。要刷多存在感,拼文采、拼智慧、拼身段也无可厚非。
但是。。。江湖上,最轰动的。。永远是“今天又推倒了一个基金经理,好累”这样的桥段,它们没有出处、没有主角,如幽灵般闪烁在10月资本圈的屏幕上,不忘例行挂上“为了新财富”的名号。小编能把这当成一个反向的表扬吗?
只是,就算是为了新财富,这样有用吗?从最无情的数学逻辑来看,就算真有这种事,推倒一个基金经理,他有权重3,且不瞒你不负你给你投个第一名,满打满算能拿上15分,要到猴年马月才能把自己推上新财富榜单?
且不说1万5千分的高度,仅仅入榜新财富,也不那么简单。2013年所有入榜新财富的分析师,最终平均得分为7208.87。如果以此作为入榜门槛,假设平均投票权重为2的话,就算投你的都给你打第一名,也需要至少720张选票(7208÷2÷5),这样一个数字,是不可能靠非正当拉票就能达成的。那个“送了100部IPAD,上了新财富”的段子,同样也是经不起推敲的。
不能入榜新财富不要紧,明年再战,但放了段子出来毁人三观还孜孜不倦,你就不对了。要赢,必须凭平时下的功夫说话。
其实最最简单的逻辑,如果把分析师评选当成一年一度的期末考试,平时无作为、临时抱佛脚的人或许可以侥幸拿分,但绝无可能赢到巅峰!
我们欢迎真实的情感式拉票,欢迎“80/90后非主流”这样让人耳目一新的研究,甚至在充满噱头的旗袍秀的题图下,发布的也是研报代表作而非主角三围。但今后,请不要用“推倒”的秘闻来侮辱市场的智商了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17