京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据告诉你:"推倒"式拉票,赢不了新财富_数据分析师
推倒几个基金经理,能赢新财富吗?要入榜新财富,平均需要获得至少720张选票支持。我们且以2013年第十一届新财富最佳分析师评选为例进行分析。
“为了xcf,今年我已经和俩人上过床了,这才是刚刚开始。夜深人静总会想起那个刚入行时的小姑娘,懵懂充满着向往,一去不复返。”这是今年匿名社交软件无秘上的爆料,比这更让人心酸的是,第一条评论说 “靠得住吗?保证会投吗?”
就算投了,这样拉票,也没有用啊,亲!
2013年的评选中,得票分数最高的是国泰君安证券[微博]房地产研究小组(孙建平、李品科、丁明、温阳),他们这个团队的得分高达15457.74。
这是一个相当惊人的数字。在去年的参选规则中,一张投票对应的最高权重是3,一张选票最多只能给孙建平贡献15分(投其第一名计5分,第二名4分,第三名3分,第四名2分,第五名1分)。而一万五千多分意味着什么呢?如果按所有投孙建平的都是评他为第一名、且权重为3来算的话,就是至少有1030张票投给了他。这当然是最极端的情形,如果按每张票平均权重2、且都投第一名来计算,也有1545张票投给他。实际投票的情形要复杂得多,由于各张票的权重不同,投票打的名次不一,但最保守的估计,也有不低于1545张选票选择了孙建平。
做出这个集体决定的,是高度分散的市场投资者。在经过严格审核之后,2013年新财富发放了近2400张最佳分析师选票,分布在多达600余家机构中,包括77家公募基金管理公司、全国社保基金理事会、99家保险/保险资产管理公司、74家证券公司、136家私募基金、22家银行、23家信托公司、23家财务公司、122家QFII、35家海外投资机构。
孙建平的成功,是在2400张选票中,争取到了不低于1545张投票,他的得票率超过64%,而2013年房地产行业的整体得票率是84%,也就是说,给房地产行业打分的选票中,有至少76%的选票选了孙建平。而且这一数字还是保守估计。
都说入榜新财富就能一夜暴富,为什么?因为入榜者的观点能覆盖并影响到市场绝大部分资金掌舵者,根据统计,这些机构投资者管理的资产规模合计达数万亿元。从公募基金到私募基金、证券、信托、财务公司等各种团体,如果孙建平不是切切实实为他们创造了正价值,他们会自发做出这样高度统一的选择吗?
有评论认为,新财富是资本圈的奥斯卡,也不乏“新财富是国内最公正,最类似于美国大选的民主选票”的褒奖。民主的基础在于投票的群体够资格、样本数量够大,是他们一票一票,选出了市场的宠儿,并清除纠正了非正当拉票的噪音。
2014年的新财富最佳分析师评选,投票群体进一步扩容,870余家机构的2700多位投资者投票,且由新财富酷鱼APP投出,进一步杜绝了“搞定一个老总,就能拿到几十张选票”的可能。没有什么力量,能操纵这个市场。
每年新财富投票季,最不缺的,就是各种拉票秀。娱人娱己,小编其实天生“看热闹不嫌事儿大”,碰到平时没日没夜做研究、到了收获季节吆喝一声“请为我投上一票”的分析师,觉得那都是光明正大,值得大大点赞。要刷多存在感,拼文采、拼智慧、拼身段也无可厚非。
但是。。。江湖上,最轰动的。。永远是“今天又推倒了一个基金经理,好累”这样的桥段,它们没有出处、没有主角,如幽灵般闪烁在10月资本圈的屏幕上,不忘例行挂上“为了新财富”的名号。小编能把这当成一个反向的表扬吗?
只是,就算是为了新财富,这样有用吗?从最无情的数学逻辑来看,就算真有这种事,推倒一个基金经理,他有权重3,且不瞒你不负你给你投个第一名,满打满算能拿上15分,要到猴年马月才能把自己推上新财富榜单?
且不说1万5千分的高度,仅仅入榜新财富,也不那么简单。2013年所有入榜新财富的分析师,最终平均得分为7208.87。如果以此作为入榜门槛,假设平均投票权重为2的话,就算投你的都给你打第一名,也需要至少720张选票(7208÷2÷5),这样一个数字,是不可能靠非正当拉票就能达成的。那个“送了100部IPAD,上了新财富”的段子,同样也是经不起推敲的。
不能入榜新财富不要紧,明年再战,但放了段子出来毁人三观还孜孜不倦,你就不对了。要赢,必须凭平时下的功夫说话。
其实最最简单的逻辑,如果把分析师评选当成一年一度的期末考试,平时无作为、临时抱佛脚的人或许可以侥幸拿分,但绝无可能赢到巅峰!
我们欢迎真实的情感式拉票,欢迎“80/90后非主流”这样让人耳目一新的研究,甚至在充满噱头的旗袍秀的题图下,发布的也是研报代表作而非主角三围。但今后,请不要用“推倒”的秘闻来侮辱市场的智商了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19