京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据告诉你:"推倒"式拉票,赢不了新财富_数据分析师
推倒几个基金经理,能赢新财富吗?要入榜新财富,平均需要获得至少720张选票支持。我们且以2013年第十一届新财富最佳分析师评选为例进行分析。
“为了xcf,今年我已经和俩人上过床了,这才是刚刚开始。夜深人静总会想起那个刚入行时的小姑娘,懵懂充满着向往,一去不复返。”这是今年匿名社交软件无秘上的爆料,比这更让人心酸的是,第一条评论说 “靠得住吗?保证会投吗?”
就算投了,这样拉票,也没有用啊,亲!
2013年的评选中,得票分数最高的是国泰君安证券[微博]房地产研究小组(孙建平、李品科、丁明、温阳),他们这个团队的得分高达15457.74。
这是一个相当惊人的数字。在去年的参选规则中,一张投票对应的最高权重是3,一张选票最多只能给孙建平贡献15分(投其第一名计5分,第二名4分,第三名3分,第四名2分,第五名1分)。而一万五千多分意味着什么呢?如果按所有投孙建平的都是评他为第一名、且权重为3来算的话,就是至少有1030张票投给了他。这当然是最极端的情形,如果按每张票平均权重2、且都投第一名来计算,也有1545张票投给他。实际投票的情形要复杂得多,由于各张票的权重不同,投票打的名次不一,但最保守的估计,也有不低于1545张选票选择了孙建平。
做出这个集体决定的,是高度分散的市场投资者。在经过严格审核之后,2013年新财富发放了近2400张最佳分析师选票,分布在多达600余家机构中,包括77家公募基金管理公司、全国社保基金理事会、99家保险/保险资产管理公司、74家证券公司、136家私募基金、22家银行、23家信托公司、23家财务公司、122家QFII、35家海外投资机构。
孙建平的成功,是在2400张选票中,争取到了不低于1545张投票,他的得票率超过64%,而2013年房地产行业的整体得票率是84%,也就是说,给房地产行业打分的选票中,有至少76%的选票选了孙建平。而且这一数字还是保守估计。
都说入榜新财富就能一夜暴富,为什么?因为入榜者的观点能覆盖并影响到市场绝大部分资金掌舵者,根据统计,这些机构投资者管理的资产规模合计达数万亿元。从公募基金到私募基金、证券、信托、财务公司等各种团体,如果孙建平不是切切实实为他们创造了正价值,他们会自发做出这样高度统一的选择吗?
有评论认为,新财富是资本圈的奥斯卡,也不乏“新财富是国内最公正,最类似于美国大选的民主选票”的褒奖。民主的基础在于投票的群体够资格、样本数量够大,是他们一票一票,选出了市场的宠儿,并清除纠正了非正当拉票的噪音。
2014年的新财富最佳分析师评选,投票群体进一步扩容,870余家机构的2700多位投资者投票,且由新财富酷鱼APP投出,进一步杜绝了“搞定一个老总,就能拿到几十张选票”的可能。没有什么力量,能操纵这个市场。
每年新财富投票季,最不缺的,就是各种拉票秀。娱人娱己,小编其实天生“看热闹不嫌事儿大”,碰到平时没日没夜做研究、到了收获季节吆喝一声“请为我投上一票”的分析师,觉得那都是光明正大,值得大大点赞。要刷多存在感,拼文采、拼智慧、拼身段也无可厚非。
但是。。。江湖上,最轰动的。。永远是“今天又推倒了一个基金经理,好累”这样的桥段,它们没有出处、没有主角,如幽灵般闪烁在10月资本圈的屏幕上,不忘例行挂上“为了新财富”的名号。小编能把这当成一个反向的表扬吗?
只是,就算是为了新财富,这样有用吗?从最无情的数学逻辑来看,就算真有这种事,推倒一个基金经理,他有权重3,且不瞒你不负你给你投个第一名,满打满算能拿上15分,要到猴年马月才能把自己推上新财富榜单?
且不说1万5千分的高度,仅仅入榜新财富,也不那么简单。2013年所有入榜新财富的分析师,最终平均得分为7208.87。如果以此作为入榜门槛,假设平均投票权重为2的话,就算投你的都给你打第一名,也需要至少720张选票(7208÷2÷5),这样一个数字,是不可能靠非正当拉票就能达成的。那个“送了100部IPAD,上了新财富”的段子,同样也是经不起推敲的。
不能入榜新财富不要紧,明年再战,但放了段子出来毁人三观还孜孜不倦,你就不对了。要赢,必须凭平时下的功夫说话。
其实最最简单的逻辑,如果把分析师评选当成一年一度的期末考试,平时无作为、临时抱佛脚的人或许可以侥幸拿分,但绝无可能赢到巅峰!
我们欢迎真实的情感式拉票,欢迎“80/90后非主流”这样让人耳目一新的研究,甚至在充满噱头的旗袍秀的题图下,发布的也是研报代表作而非主角三围。但今后,请不要用“推倒”的秘闻来侮辱市场的智商了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28