京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我国正从世界贸易大国走向贸易强国。建设贸易强国,需要更多依靠现代科学技术重塑外贸竞争新优势,提升外贸发展的质量与效益。大数据在电子商务中的应用日益广泛,给我国外贸发展提供了难得机遇。充分利用大数据等现代信息技术,是我国培育外贸竞争新优势的重要举措。企业和政府部门应加强合作,发挥大数据对外贸发展的“新引擎”作用。
大数据为外贸发展带来新机遇
重构外贸流程,激发增长潜力。2014年上半年,一达通、敦煌网、亿赞普等第三方外贸服务企业的在线交易平台打破了外贸整体低迷的态势,实现了交易量40%的超高速增长。交易平台依托大数据服务功能,整合外贸信息流、资金流、物流,降低了交易成本,提高了交易效率。比如,在一达通平台上,企业通关时间从原来的2天缩短到6小时,退税从3个月缩短到3天。交易平台上的中小企业还能在大数据“经济雷达”的引领下,直接面对海外消费终端客户,精简海外营销环节。
大数据与平台数据对接,促进平台功能延伸。第三方外贸服务企业借助大数据分析吸引中小企业群体在其平台进行交易、结汇和融资,中小企业在平台交易形成的数据和信息又为第三方外贸服务企业拓展服务功能、创新数据服务产品提供机会,大数据与平台数据实现了良性互动。第三方外贸服务企业利用大数据拓展平台服务功能,逐渐延伸出在线报关、信用融资、跨境结算、全球商业咨询等高增值服务,外贸业务的专业化、信息化水平显著提高。如一达通整合平台上万家中小外贸企业交易信息,编报外贸景气指数、外贸运行动态报告等,提供给银行、政府部门参考。亿赞普集团与欧洲等地电信运营商合作,自行开发170多项专利,对海外市场消费行为变化等做量化分析和趋势预测,帮助外贸企业对目标终端市场进行“点对点”的线上精准营销。据测算,利用大数据精准营销的成本较传统展会营销、海外设点营销至少减少1/10。
企业国际化步伐加快,大数据与实体经济加速融合。第三方外贸服务企业主要有跨境电商企业、外贸综合服务企业、供应链管理企业三种。随着市场竞争日趋激烈,许多国家积极扶持本国贸易领域的大数据服务商。为适应这种形势,我国企业积极推进国际化战略,将业务领域向投资和服务延伸。这也促进了大数据服务与实体经济的紧密结合。
实践中存在的主要问题
传统外贸管理模式需进一步调整。我国通关、退税、结汇等环节互联互通电子化程度不高,政企数据对接存在障碍,B2B(企业对企业)实现全程在线交易困难较多。各地方、各部门对第三方外贸服务企业的管理未完全形成工作合力。
法律政策尚不健全,市场秩序有待规范。我国外贸大数据应用还处在起步阶段,相关法律政策有待建立健全。互联网企业征信体系尚未建立,第三方外贸服务企业实际上替代社会承担中小企业的信用风险。企业和个人信息安全问题、数据共识性问题、技术标准化问题、政府监管问题等诸多方面仍需规范。
企业深入挖掘信息和客户资源难度较大。部分国家出于信息安全考虑,对其数据运营商与我企业合作持抵触态度。国内企业尚未摆脱传统外贸发展定式,借助大数据整合外贸资源、获取发展商机的意识不强。
大数据服务外贸发展仍面临较多瓶颈。我第三方外贸服务企业开发和利用大数据面临技术研发力量不足、海外平台建设门槛高、融资难度大、海外仓功能单一、网络征信评级标准不统一、专业人才匮乏等实际困难,亟须国家加大政策和资金支持力度。
利用大数据支持外贸发展的思路
积极支持大数据在经济领域的应用。利用大数据开展国际经济和贸易便利化合作。支持国内电信运营商和大数据服务平台企业走出去。加强大数据在外贸领域应用的宣传和引导,鼓励企业研发数据信息分析技术,指导外贸企业尤其是中小企业利用数据分析掌握市场需求、准确捕捉商机。
加强法律制度建设,保证实体经济安全。将大数据纳入电子商务基本法律框架,加强对数据收集和使用的监管,保护企业和个人的隐私与合法权益。支持权威数据库的开发开放,推动建立大数据发布、共享、传输、软硬件系统和服务标准体系。利用大数据搭建互联网诚信体系。
建立大数据平台,提升贸易便利化水平。改革进出口管理方式,尽快建立涵盖报关、报检、结汇、退税等环节的统一大数据平台,逐步实现政企数据对接、线上线下同步,最终取消纸质单据审核。可考虑设立全国性的通关数据中心,企业在中心预报关,而后任选国内一口岸进行报关报检。
推动解决大数据落地应用难问题。支持我企业与跨国电信运营商合作建设海外大数据平台,鼓励企业开发数据及信息分析技术。支持第三方外贸服务企业利用大数据合作建立外贸企业征信体系,提供便捷、高效的互联网金融服务,降低企业融资成本。支持企业扩大海外仓功能,试点建设境外商贸物流园区,为海外仓提供融资保险、保税物流、展示展销等综合性服务。重视数据分析领域的人才培育和引进。
本文来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19