京公网安备 11010802034615号
经营许可证编号:京B2-20210330
教育大数据市场前景广阔_数据分析师
美国高中生和大学生的糟糕表现——高中生退学率高达30%(平均每 26秒就有一个高中生退学),33%的大学生需要重修,46%的大学生无法正常毕业——在让教育部门忧心忡忡的同时,也让教育科技公司找到了淘金的机会。近些年来,许多教育科技公司纷纷开始抢滩大数据学习分析的市场,竞争极为激烈。
美国的一些企业已经成功地商业化运作教育中的大数据。全球最大的信息技术与业务解决方案公司IBM就与亚拉巴马州的莫白儿县公共学区进行大数据合作。结果显示,大数据对学校的工作具有重要作用。当IBM刚刚开始与这一学区合作时,除了学生成绩不好之外,该县还面临着辍学率已增加到48%的严峻情况。根据联邦政府的《不让一个孩子掉队法》(No Child Lift Behind,NCLB),学生成绩糟糕的地方政府将受到惩罚。为了应对这一巨大的挑战,该县此前已经在学生数据的基础上建立了一个辍学指示工具,并将其用于全县层面的决策。但IBM认为这仍不足以改善莫白儿县窘迫的现状,需要借助IBM的技术支持重新建立大数据,进而利用大数据分析来改善学区内所有学生的整体成绩。
在美国的教育大数据领域,除了处于领先地位的IBM,还有像“希维塔斯学习”(Civitas Learning)这样的新兴企业。“希维塔斯学习”是一家专门聚焦于运用预测性分析、机器学习从而提高学生成绩的年轻公司。该公司在高等教育领域建立起最大的跨校学习数据库。通过这些海量数据,能够看到学生的分数、出勤率、辍学率和保留率的主要趋势。通过使用100多万名学生的相关记录和700万个课程记录,这家公司的软件能够让用户探测性地知道导致辍学和学习成绩表现不良的警告性信号。此外,还允许用户发现那些导致无谓消耗的特定课程,并且看出哪些资源和干预是最成功的。
在加拿大,总部位于安大略省沃特卢的教育科技公司“渴望学习”(Desire 2 Learn)已经面向高等教育领域的学生,推出了基于他们自己过去的学习成绩数据预测并改善其未来学习成绩的大数据服务项目。这家公司的新产品名为“学生成功系统”(Student Success System)。“渴望学习”声称加拿大和美国的1000多万名高校学生正在使用其学习管理系统技术。“渴望学习”的产品通过监控学生阅读电子化的课程材料、提交电子版的作业、通过在线与同学交流、完成考试与测验,就能让其计算程序持续、系统地分析每个学生的教育数据。老师得到的不再是过去那种只展示学生分数与作业的结果,而是像阅读材料的时间长短等这样更为详细的重要信息,这样老师就能及时诊断问题的所在,提出改进的建议,并预测学生的期末考试成绩。
像美国的“梦盒学习”(DreamBox Learning)公司和“纽顿”(Knewton)公司这类领先性的开发者们,已经成功创造并发布了各自版本的利用大数据的适应性学习(adaptive learning)系统。在2012年国际消费电子展的高等教育技术峰会上,世界最大的教育出版公司培生集团(Pearson)与适应性学习领域里的先行者纽顿公司共同发布了主要由培生集团开发的适应性学习产品——“我的实验室/高手掌握”(MyLab/Mastering)。这款产品在将全球范围内向数百万名学生提供个性化的学习服务,向他们提供真实可信的学习数据,让学校通过这些数据提高学生的学习效果并降低教学成本。首款产品将在美国的数十万名学生中使用,包括数学、英语,以及写作等技能开发课。
纽顿的创办人、首席执行官何塞·费雷拉和培生高等教育分公司的总裁格雷格·托宾共同出席了“我的实验室/高手掌握”的发布会并介绍了合作的细节,讨论了高等教育的未来。托宾说:“个性化学习是未来教育的一个关键点。我们把纽顿的技术整合到‘我的实验室/高手掌握’这个产品中,是整个行业进入个性化教育新时代的引领风气之举”。费雷拉说:“从今年秋季起,培生的课程材料将在纽顿技术的支持下,开始适应性地满足每个学生独特的学习需求。学生能够生成大量有价值的数据,纽顿可以分析这些数据,以此确保学生以最有效、最高效的方式学习。这是教育的一个新的前沿领域”。按照已经达成的协议,这两家公司2013年将进一步扩大合作,把大学数学、大学统计学、大学一年级作文、经济学以及科学等领域纳入其产品中去。
此外,由总部设在美国纽约的麦格劳·希尔公司(McGraw-Hill)、总部设在英国伦敦的培生集团和其他出版公司共同开发的“课程精灵”系统(CourseSmart),也允许教授们通过让学生使用电子教科书来跟踪他们的学业进展,并向助教们显示学生的学习参与度和学习成绩等大量的数据信息,只是这一系统尚不具备预测的功能。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19