京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据可以帮助企业了解金融风险
研究人员正使用大数据和新模型以更好了解复杂金融问题并化解金融风险。麻省理工学院的数据,系统及社会研究所(IDSS)正创建基于大数据的模型以帮助减少金融风险。
该项目的目的是发现新问题,更优的模型并最终创建一个更强大,灵活的金融体系。IDSS正采取多学科视角来看待金融风险并聚集工程师,数据理论家,数学家,经济学家,生物学家和政策专家来创造一个更强大,灵活的金融体系。
IDSS研究的一个中心主题是采用系统方法来进行分析。金融系统相关问题需要采取开阔视野,互相关联以及跨系统的方法来研究,而不仅仅是侧重于单个银行市场部分。

麻省理工学院斯隆商学院的Andrew Lo及Susan T. Harris教授在接受Financial Planning杂志采访时说到:“当一个生态学家管理某一区域的生态时,他们不会仅仅考虑正饲养的动物或植物,他们还会考虑生态系统内土壤细菌及食物的来源。我认为这就是我们在考虑金融监管时缺失的部分—我们并没有把系统当作一个系统来看待。”
生态系统模型的一个工具性特点是系统组件及它们之间的相互作用的细节复杂性。但从工程角度来看,系统的网络模型并无区别。
实验室信息与决策系统(LIDS)经理兼IDSS金融教师AsuOzdaglar称:“个体层面冲击如何传播,放大,并产生系统性风险显然是一个系统层面的问题。”
为了充分体会推动市场行为的力量,我们有必要收集那些相关,跨行业,可访问的数据。随着新的可用数据的获取,其中大多数是高精细化数据,数据管理及分析的挑战也随之而来:在庞大规模的数据中获取有效信息,保证隐私性及安全性,从模型中获取政策制定及决策的建议。和银团系统性风险分析(CSRA)进行合作是IDSS研究人员应对这些挑战的一个关键。
隐私是金融数据管理的一个独特的挑战。和其他行业不同,交易知识及想法的行业需要申请专利,从而受到保护,大部分金融行业的脑力成果都不受知识产权保护,包括那些业务流程涉及商业机密的部分。结合消费者数据隐私的问题,这将造成一个访问数据的障碍。保护商业秘密及给监管部门提供系统性风险透明度是IDSS研究人员的另一个需要解决的矛盾。Lo说:“大数据和机器学习已经完全改变了几个行业。我认为金融行业也将发生同样的事情。我们正看到金融系统各个不同部分以前看不到的关联。由于大量数据及分析数据能力的结合,我们现在可以更加有效地管理风险并识别投资者及其他金融市场参与者价值的新来源。这将开启金融创新和探索的一个全新的黄金时代。”
IDSS汇集了多个学科的天才,可以从多种不同位置观察金融系统。Ozdaglar称:“不同的视角可以带来不同的观点,这总是有用的。最初LIDS内系统性风险不仅采用了多学科研究方法,还采用了系统性方法,这可以很好照顾到当前的问题。”
他说:“系统性风险不仅仅发生在金融系统中,举个例子,它还会影响环境。大型系统通常都是每个人都认为是理所当然的系统,没人会觉得有责任感或维护它们。通过正视这些系统性问题,我们可以取得更多进步并产生。“
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08