京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大同”原本是中国古代的思想,指人类最终可以达到的理想世界,代表着人类对未来社会的美好憧憬。现代又加入了全球范围内的政治、经济、科技、文化融合的思想。而今正流行的“大数据”,其理想模式也是“天下大同”,最终才能更好的发挥大数据的效能,并最终实现大数据的共治共享。
然而现实世界中,要实现大数据的共治共享似乎有点“天方夜谭”,最典型的例子就是巨头们都在叫嚣着大数据,但往往又出于商业利益的考量,谁都希望守住自家的一亩三分地,不愿意将自家的数据积累共享,甚至连平台接口协议共享实现都不易。
我们都知道Fitbit之前就曾表态过,其产品不会支持苹果的Apple Store平台,数据也不能实现共享,自然和Apple Health就无法同步。结果可想而知,强势的一方苹果公司要求Fitbit公司的应用全部从Apple Store下架,而这仅仅只是APP应用平台和APP应用之间的故事。
在另一个流行的领域“车联网”中,数据的共享同样是难中之难,而且目前也因此而导致目前车联网发展举步维艰。作为汽车的主导者,汽车公司基于安全以及自身商业利益的考量,自然也不愿意将车联网的核心数据共享出去,顶多友情开放一些无关紧要的数据。而车联网产业链条的各方仅能得到有限的数据,弃之可惜,但是即便都收集起来也没多大的实际意义。最终可悲的是,汽车企业尽管也在美其名曰的主导和推行自家品牌的车联网,但车联网始终放在自家品牌之后,都是站在为汽车品牌服务的角度,重点在于售车,其主导的车联网也是自家品牌的联网,和其他品牌的汽车无关,甚至和车联网链条的其他企业亦无关。但车联网的最终实现又必须是人、车、路多方的数据共享和协同,车企自身的车联网充其量也就是一个“过家家”的游戏罢了。
除了APP应用平台和APP之间的故事,车联网产业链关于数据的故事,时下iOS和Android两大系统的大战和数据兼容也是一大难题。对于APP开发者来说,同样的应用必须开发适配iOS和Android两个系统的不同版本。不过更为头疼的是两大系统之间的数据同步和共享问题,因为两方企业基于商业利益的竞争,谁都不愿意妥协和让步,也都不愿意放开自己的用户和数据。
然而尽管企业有企业的商业利益考量,企业有企业的自建屏障进行保护,但数据的共享和协同终究是大趋势。
关于Fitbit数据和Apple Health同步问题有了更好的解决方式。Fitbit数据可以通过第三方数据和Apple Health实现同步,此举自然是可喜的一大步,总有一种力量在推动着大数据的共享。
而关于车联网间的数据共享问题,目前也有着介于“法律边界红线边缘”的处理方式,即有第三方公司通过破解can协议和网关的方式取得汽车数据,并最终“分享”给车联网的产业链。尽管手段有待商榷,但确确实实在助推汽车公司走向更加开放。
iOS和Android数据共享和数据整合则应该交给新的创业型公司,总会有惊喜。iOS和Android的数据共享也是一大刚需和大市场,有理由值得期待。
然而,事情的发展总会损伤到既得利益者的固有利益和脆弱心里,既得利益者必然会防抗。但不管怎么样,笔者不太希望现实世界里,平台太多,“数据”不够用的“杯具”继续。过多相互有意隔绝的平台,势必会造成未来大量的产生的数据,却又人为地产生大量不兼容、不互通、不可二次利用的问题。每个投身期间的大小企业,都惦记着用自己的产品和数据格式和协议,形成竞争壁垒,然后党同伐异都算奢望,每家企业都想着凭借数据制霸天下。
如此,最终大数据终将成为空中楼阁,很难造福人类。前文说到的车联网也就只能成为各家车企内部的局域网,离人、车、路的协同越来越遥远。
有需求的地方,自然就会有商机,自然也会产生新的创业公司和创业智慧。第三方的同步和兼容工具,就极有可能成为一个衍生应用市场。尽管各路衍生应用市场和原有平台诸侯也一定会在捍卫自己的“江山”的过程中打个你死我活。但最终,肯定会有非常少量的平台最终成为数据协同和整合共享标准,推动大数据的“大同”。
当车联网、跨系统平台不再是梦,而是现实的时候,大数据的“天下大同”就开始迈出了实质性的步伐。革命尚未成功,第三方应用,第三方数据协同平台们仍需努力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03