京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大同”原本是中国古代的思想,指人类最终可以达到的理想世界,代表着人类对未来社会的美好憧憬。现代又加入了全球范围内的政治、经济、科技、文化融合的思想。而今正流行的“大数据”,其理想模式也是“天下大同”,最终才能更好的发挥大数据的效能,并最终实现大数据的共治共享。
然而现实世界中,要实现大数据的共治共享似乎有点“天方夜谭”,最典型的例子就是巨头们都在叫嚣着大数据,但往往又出于商业利益的考量,谁都希望守住自家的一亩三分地,不愿意将自家的数据积累共享,甚至连平台接口协议共享实现都不易。
我们都知道Fitbit之前就曾表态过,其产品不会支持苹果的Apple Store平台,数据也不能实现共享,自然和Apple Health就无法同步。结果可想而知,强势的一方苹果公司要求Fitbit公司的应用全部从Apple Store下架,而这仅仅只是APP应用平台和APP应用之间的故事。
在另一个流行的领域“车联网”中,数据的共享同样是难中之难,而且目前也因此而导致目前车联网发展举步维艰。作为汽车的主导者,汽车公司基于安全以及自身商业利益的考量,自然也不愿意将车联网的核心数据共享出去,顶多友情开放一些无关紧要的数据。而车联网产业链条的各方仅能得到有限的数据,弃之可惜,但是即便都收集起来也没多大的实际意义。最终可悲的是,汽车企业尽管也在美其名曰的主导和推行自家品牌的车联网,但车联网始终放在自家品牌之后,都是站在为汽车品牌服务的角度,重点在于售车,其主导的车联网也是自家品牌的联网,和其他品牌的汽车无关,甚至和车联网链条的其他企业亦无关。但车联网的最终实现又必须是人、车、路多方的数据共享和协同,车企自身的车联网充其量也就是一个“过家家”的游戏罢了。
除了APP应用平台和APP之间的故事,车联网产业链关于数据的故事,时下iOS和Android两大系统的大战和数据兼容也是一大难题。对于APP开发者来说,同样的应用必须开发适配iOS和Android两个系统的不同版本。不过更为头疼的是两大系统之间的数据同步和共享问题,因为两方企业基于商业利益的竞争,谁都不愿意妥协和让步,也都不愿意放开自己的用户和数据。
然而尽管企业有企业的商业利益考量,企业有企业的自建屏障进行保护,但数据的共享和协同终究是大趋势。
关于Fitbit数据和Apple Health同步问题有了更好的解决方式。Fitbit数据可以通过第三方数据和Apple Health实现同步,此举自然是可喜的一大步,总有一种力量在推动着大数据的共享。
而关于车联网间的数据共享问题,目前也有着介于“法律边界红线边缘”的处理方式,即有第三方公司通过破解can协议和网关的方式取得汽车数据,并最终“分享”给车联网的产业链。尽管手段有待商榷,但确确实实在助推汽车公司走向更加开放。
iOS和Android数据共享和数据整合则应该交给新的创业型公司,总会有惊喜。iOS和Android的数据共享也是一大刚需和大市场,有理由值得期待。
然而,事情的发展总会损伤到既得利益者的固有利益和脆弱心里,既得利益者必然会防抗。但不管怎么样,笔者不太希望现实世界里,平台太多,“数据”不够用的“杯具”继续。过多相互有意隔绝的平台,势必会造成未来大量的产生的数据,却又人为地产生大量不兼容、不互通、不可二次利用的问题。每个投身期间的大小企业,都惦记着用自己的产品和数据格式和协议,形成竞争壁垒,然后党同伐异都算奢望,每家企业都想着凭借数据制霸天下。
如此,最终大数据终将成为空中楼阁,很难造福人类。前文说到的车联网也就只能成为各家车企内部的局域网,离人、车、路的协同越来越遥远。
有需求的地方,自然就会有商机,自然也会产生新的创业公司和创业智慧。第三方的同步和兼容工具,就极有可能成为一个衍生应用市场。尽管各路衍生应用市场和原有平台诸侯也一定会在捍卫自己的“江山”的过程中打个你死我活。但最终,肯定会有非常少量的平台最终成为数据协同和整合共享标准,推动大数据的“大同”。
当车联网、跨系统平台不再是梦,而是现实的时候,大数据的“天下大同”就开始迈出了实质性的步伐。革命尚未成功,第三方应用,第三方数据协同平台们仍需努力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22