
闲暇的时候,我最喜欢去书店“游览”。书的内容姑且不说,光是花花绿绿的封面,就常引我流连忘返。这一次,两本书的封面格外吸引我的眼球。
一个封面的图案是一只跳舞的大象,前腿腾空,竖直向上的长鼻子冒出五颜六色的电线(导线),书名是《大数据——一场即将改变我们生活、工作和思维方式的革命》。另一个封面的图案是英国画家约瑟夫·怀特画于1766年的一幅油画,画面内容是一位哲学家正在讲解太阳系,讲解人严肃认真,听众神情专注,代替太阳的烛光将两名求知儿童的脸庞照得亮堂堂,书名是《启蒙思想——为什么它依然重要》。
《大数据》的封面构图是说,数字化时代的数据非常大,大得就像动物世界的一头大象。而大象却要翩翩起舞,预示着一场数据化革命即将到来。《启蒙思想》的封面通俗易懂,日心说推翻了地心说,启蒙思想恰似普照大地的阳光,引导人们走向光明。
2008年世界经济危机爆发后,全球经济时好时坏,蹒跚跌撞地折腾到现在。有人说,5年来,世界经济犹如在黑暗中跋涉,偶现曙光却转瞬即逝。全世界人民都很焦急,盼望新经济模式助推经济发展。现在,大数据喧嚣登场了,似乎可以将世界经济引出黑暗。
什么是大数据?《大数据》一书未能给出确切定义。我以为,从本质上讲,大数据首先指的是数据的数量大(VOLUME)。2013年,世界存储的数字化数据将达1.2泽字节。这么大的数据究竟有多大?形象一点说,如果把这些数据印成书,一本挨一本平铺,可覆盖52个美国;若刻成光盘且将之垒成5堆,那么,5根光盘“通天柱”可直达月球。
大数据的第二个特点,是数据的增长速度快(VELOCITY)。德国发明家古登堡1439年发明铅字印刷后,欧洲第一次出现了信息爆炸。美国历史学家伊丽莎白·爱森斯坦研究发现,1453年-1503年的50年间,欧洲约印刷了800万本书,超过了之前欧洲所有手抄书的总和。也就是说,欧洲的信息储量用50年翻了1倍。而现在,美国信息专家马丁·希尔伯特说,数字数据储量每3年就会翻1倍。人类存储信息的速度比世界经济的增长速度快4倍。
当然,大数据还具备如下3个容易理解的特点:种类多(VARIETY)、准确(VERACITY)和价值(VALUE)。
在世界经济苦难挣扎之时,许多聪明的商家把目光瞄上了具备上述“5V”特征的大数据。他们认为,世界储存的数据虽然庞大,但其已被利用的价值只有一小部分。如果转变思维方法,将这些数据重新组合和处理,其潜在价值之大难以估量。
比如说,美国社交网站脸书(FACEBOOK)有10亿用户,网站对这些用户信息进行分析分类后,广告商可根据分析结果精准投放广告。因此,对广告商而言,脸书10亿用户的数据信息值1000亿美元。
另有分析显示,2012年,运用大数据的世界贸易额已达60亿美元。2016年,这个数字预计将达200亿美元。
既然重新处理数据能赚钱,一些具有用户信息优势的公司,如谷歌、微软等,都会尽其所能搜集其需要的信息。这样,至少有两个问题已凸显了出来。一个是如何保护个人隐私问题。奥美公关公司最近公布的一份调查报告显示,75%的人不希望企业存储自己的个人信息,90%的人反对企业收集自己上网浏览网页的记录。另一个是如何防止信息垄断问题。由于谷歌、微软等公司用户数量上的绝对优势,它们占有的用户信息也就占有绝对优势,再加上这些公司还有信息储存、传输和分析技术上的优势,它们也就很容易垄断数据贸易市场。
近年来,欧盟一直在调查微软和谷歌在侵犯个人隐私和信息垄断方面的问题。如果指控被证实,这两家公司将面临重罚。其他国家也应向欧盟学习,提前从速立法,以规范可能日益繁荣的数据贸易。
从经济角度讲,大数据及其产业链到底能带来多大效益,现在还不好估量。但有一点可以肯定,即使大数据可以引领某个行业暂时繁荣,也可以成就许多亿万富翁,但却不能从根本上扭转目前世界经济的颓势。因为,从根儿上讲,大数据充其量是一次如何充分利用现有数据的思维转换,而非彻底改变经济模式的“大思想”。
什么是“大思想”?我以为,凡是构成某一行业从无到有之基础的思想,就是“大思想”。比如说,德国启蒙思想家莱布尼茨曾写过《1与0,一切数字的神奇渊源》一文,从而发明了二进制。没有二进制,很难想象会出现现在的计算机和数字化;没有计算机和数字化,又怎能出现IT行业和大数据呢?
再比如,英国启蒙思想家亚当·斯密1776年发表《国富论》一书。可以说,没有斯密倡导的“看不见的手”,很难想象会有现代自由市场经济;没有自由市场经济,人类的物质生活水平就很难发展到目前的富裕程度。英国史学家巴克勒在《文明史》一书中说:“从人类财富创造的角度看,斯密超过了所有政治家。”
要想医治当前世界经济的病态,大数据之类的思维变换或许在治标上能起一定作用。但要治本,还需催生科技创新的“大思想”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11