京公网安备 11010802034615号
经营许可证编号:京B2-20210330
区别于传统环境,鉴于云环境中众多不可预测的因素和异常,其时间序列breakout检测并不容易。近日,Twitter开源了一款基于E-Divisive with Medians(EDM)的breakout检测工具,旨在更好地分析复杂环境中的时间序列数据。
以下为译文
当下,大数据已经深入影响到各个领域,其中包括新产品决策制定、用户参与程度衡量、产品的定制化推荐、医疗、数据中心效率等。
而着眼数据类型,时间序列数据无疑是非常常见的一种形式。随着数据收集和挖掘成本的下降,包括Twitter等越来越多的公司每天都会使用大数据技术执行数百万的度量。而在生产环境中,时间序列也常常因为内在或(和)外在的因素而产生breakout(断层,跳跃),不幸的是,这些breakout往往可能会从本质上影响到用户体验或者(和)业务底线。举个例子,在云基础设施环境中,系统度量时间序列数据突变(类似硬件故障影响等因素)可能就会对服务的可用性和性能产生影响。
鉴于Twitter的实时特性(高性能已经成为最佳用户体验交付的关键所在),具备及早发现breakout的能力无疑至关重要。同时,breakout监测还常常被用于考量现实生活中一些流行事件的用户参与形势,比如奥斯卡奖、超级碗、世界杯等。
Breakout由两个稳定状态和一个过渡区间构成。概括来讲,breakout分为两种:
均值漂移(Mean shift):时间序列的突发性变化。举个例子,CPU使用率忽然从40%跳到60%就是个均值漂移。
平滑改变(Ramp up):一个渐变的过程,两个平稳状态之间平滑的转变。举个例子,CPU利用率缓缓地从40%提升到60%。
下图阐述了现实数据中的多个均值漂移
鉴于度量上的每个增值都可以被收集,breakout的自动化检测已势在必行。当下已经不乏许多传统环境下的breakout检测研究,但是却不存在云数据中的breakout检测技术。这种情况主要归结于现存技术在异常环境中不具备足够的鲁棒性,而这些异常在云数据中又恰恰经常出现。
今天,我们非常高兴的公开BreakoutDetection,一个可以便捷和快速监测breakout的开源R包。通过BreakoutDetection,我们希望社区可以像Twitter一样从中获益,并且促进它的快速发展。
BreakoutDetection建立的原因非常简单,我们期望在异常环境中拥有一个鲁棒性良好的工具,站在统计的角度上对breakout进行检测。当下,BreakoutDetection包已可被用于各种各样的环境中,举个例子,它可以在用户参与的A/B测试环境中检测breakout,也可以被用于行为变化的检测,或者解决计量经济学、金融工程学以及社会科学等领域的问题。
BreakoutDetection工作机制
这个包实现了一个被称为E-Divisive with Medians(EDM)的算法。同时,EDM同样可用于给定时间序列中的分布变化。EDM使用了一个 极具鲁棒性的度量指标,也就是通过中值,使用排列检验来概算一个breakout的统计显著性。
此外,EDM是非参数型的。鉴于生产数据很少遵从通常的假定正态分布以及其他公认模型,非参数型这一点非常重要。而在我们的实践中,时间序列往往包含一个以上的breakout。有鉴于此,BreakoutDetection包同样可以被用于给定时间序列上的多breakout检测。
开始使用BreakoutDetection
在R控制台中使用如下命令安装这个R包:
install.packages("devtools")
devtools::install_github("twitter/BreakoutDetection")
library(BreakoutDetection)
breakout函数被调用以检测给定时间序列上的一个或多个统计显著性breakout,你可以使用以下命令来获得breakout函数的帮助文档:
简单用例
为了完成这个例子,我们建议用户使用BreakoutDetection包中包含的实例数据集,这个操作可以通过以下命令完成:
data(Scribe) res = breakout(Scribe, min.size=24, method='multi', beta=.001, degree=1, plot=TRUE) res$plot
通过上面的操作,你可以获得下图
从上图我们可以得知,我们发现给定时间序列中存在一个breakout,同时还存在大量的异常。两个垂直红线中间的部分显示了由EDM算法检测出的breakout。区别于上文我们提到的常见方法,EDM在多异常环境下表现出了良好的鲁棒性。时间序列上出现的平均变化可以通过下方注释图更好地进行理解:
上面注释图中的水平线相当于每阶段的近似均值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08