
大数据风控—互联网金融的命脉
近几年,大数据已经撼动了世界的方方面面,从商业科技到医疗、政府、教育、经济、人文以及社会其他各个领域;数据成了有价值的公司资产、重要的经济投入和新型商业模式的基石。
有人曾把大数据比喻成“新时代的石油;业界也有句话叫,得数据者得天下。现如今,在大数据时代下,数据比以往任何时候都更加根植于我们生活中的每个角落。我们试图用数据去解决问题、改善福利,并且促成新的经济繁荣等等。以上这些在互联网金融业尤为突出。
大数据风控已成为互联网金融核心环节
早在1980年,著名未来学家阿尔文·托夫勒就在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮”。不过,直到2009年前后,“大数据”才成为互联网信息技术行业的流行词汇。2013年,随着互联网金融的空前热门,也才真正意义上将“大数据”推到了高潮。
如果探究互联网金融与大数据流行之间的关联,背后有一个很关键的因素,就是互联网金融一直无法解答一个核心命题——风险控制。
某位业内资深人士也曾表示,互联网金融的核心环节还是风控,行业的健康成长也有赖于此。互联网金融不能简单的将传统金融服务模式搬上线,其核心竞争力不是营销获客能力而是大数据风控能力。
那么,如何利用好大数据进行风险评级和风险控制将是今后必须面对的问题。就此,笔者简单的谈一下自己的看法:
一、互联网大数据的积累已经让风控进入2.0时代。通过数据的积累,可以实现客户开发和数据采集,然后经过后台的风控模型运算得出结果,最终达到控制风险目的。
二、目前,互联网金融平台除与外部机构合作进行大数据风控外,平台也在积极搜集自有平台的数据。因此,抛开中国人民银行的征信数据外,平台与平台间的打通、交流和数据共享也成为重要的一环。
三、未来可以通过大数据法则,用查询征信记录的方式解决很多问题。基于互联网科技发展起来的大数据可以对信用决策起到重要补充。
事实上,通过大数据管控金融风险的案例在美国已经被广泛采用,但由于国内互联网金融行业目前仍处于野蛮生长阶段,更多企业将竞争焦点集中在前端如何抢夺用户,而不是后端如何保障用户权益和资金安全上来。这也导致了近年来多家P2P公司跑路,给投资人造成巨大大损失。
大数据征信优势凸显
近年来,中国互联网金融发展迅猛,但问题频发,引入大数据征信成为破解互联网金融风控难题的关键。近日,有媒体报道“6月央行将验收颁发个人征信牌照”,阿里、腾讯等位列其中。这些互联网金融公司具备数据来源广、类型多样化等优点,再通过大数据计算后,更能全面反映个人信用情况。
互联网征信可通过互联网技术以及海量数据优势和用户信息,从财富、安全、守约、消费、社交等几个纬度来评判,为用户建立信用报告,形成以大数据为基础的海量数据库。——这便是大数据的优势所在。
虽然大数据征信的优点突出,但其劣势也很明显:数据源的真实性、庞大数据的整合难度,短期内信用评价数据精准性较低以及获取数据的合法性等问题。
作为互联网金融目前动作幅度最小,却最具潜力和价值的大数据将在2015年发光发热。那么大数据将在未来的互联网金融中如何发光发热?未来如何利用好大数据进行风控?如何更精准的通过大数据完成征信?敬请关注2015年5月24日第二届清华五道口全球金融论坛。相信通过行业精英,专家学者的讨论发言,您会找到答案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29