京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据风控—互联网金融的命脉
近几年,大数据已经撼动了世界的方方面面,从商业科技到医疗、政府、教育、经济、人文以及社会其他各个领域;数据成了有价值的公司资产、重要的经济投入和新型商业模式的基石。
有人曾把大数据比喻成“新时代的石油;业界也有句话叫,得数据者得天下。现如今,在大数据时代下,数据比以往任何时候都更加根植于我们生活中的每个角落。我们试图用数据去解决问题、改善福利,并且促成新的经济繁荣等等。以上这些在互联网金融业尤为突出。
大数据风控已成为互联网金融核心环节
早在1980年,著名未来学家阿尔文·托夫勒就在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮”。不过,直到2009年前后,“大数据”才成为互联网信息技术行业的流行词汇。2013年,随着互联网金融的空前热门,也才真正意义上将“大数据”推到了高潮。
如果探究互联网金融与大数据流行之间的关联,背后有一个很关键的因素,就是互联网金融一直无法解答一个核心命题——风险控制。
某位业内资深人士也曾表示,互联网金融的核心环节还是风控,行业的健康成长也有赖于此。互联网金融不能简单的将传统金融服务模式搬上线,其核心竞争力不是营销获客能力而是大数据风控能力。
那么,如何利用好大数据进行风险评级和风险控制将是今后必须面对的问题。就此,笔者简单的谈一下自己的看法:
一、互联网大数据的积累已经让风控进入2.0时代。通过数据的积累,可以实现客户开发和数据采集,然后经过后台的风控模型运算得出结果,最终达到控制风险目的。
二、目前,互联网金融平台除与外部机构合作进行大数据风控外,平台也在积极搜集自有平台的数据。因此,抛开中国人民银行的征信数据外,平台与平台间的打通、交流和数据共享也成为重要的一环。
三、未来可以通过大数据法则,用查询征信记录的方式解决很多问题。基于互联网科技发展起来的大数据可以对信用决策起到重要补充。
事实上,通过大数据管控金融风险的案例在美国已经被广泛采用,但由于国内互联网金融行业目前仍处于野蛮生长阶段,更多企业将竞争焦点集中在前端如何抢夺用户,而不是后端如何保障用户权益和资金安全上来。这也导致了近年来多家P2P公司跑路,给投资人造成巨大大损失。
大数据征信优势凸显
近年来,中国互联网金融发展迅猛,但问题频发,引入大数据征信成为破解互联网金融风控难题的关键。近日,有媒体报道“6月央行将验收颁发个人征信牌照”,阿里、腾讯等位列其中。这些互联网金融公司具备数据来源广、类型多样化等优点,再通过大数据计算后,更能全面反映个人信用情况。
互联网征信可通过互联网技术以及海量数据优势和用户信息,从财富、安全、守约、消费、社交等几个纬度来评判,为用户建立信用报告,形成以大数据为基础的海量数据库。——这便是大数据的优势所在。
虽然大数据征信的优点突出,但其劣势也很明显:数据源的真实性、庞大数据的整合难度,短期内信用评价数据精准性较低以及获取数据的合法性等问题。
作为互联网金融目前动作幅度最小,却最具潜力和价值的大数据将在2015年发光发热。那么大数据将在未来的互联网金融中如何发光发热?未来如何利用好大数据进行风控?如何更精准的通过大数据完成征信?敬请关注2015年5月24日第二届清华五道口全球金融论坛。相信通过行业精英,专家学者的讨论发言,您会找到答案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08