京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据变现四大模式释放电信大数据价值
OTT、管道化、资费调整是近几年电信行业在市场竞争上的主要挑战,但现在电信行业也开始有了巨大的转变,开始通过数据这个金矿来进行变现,利用数据为客户提供产品和服务,而且服务也做的越来越精细和具有针对性,向其他行业中进行拓展。
从目前看来数据变现上,中国和国外的电信运营商都处在不断探索的阶段,在商业层面上并没有很好的收入,但当数据的价值得到认可时,也将会有更大的价值释放。
电信行业四大变现模式
大数据变现主要是通过企业内部和外部两部分数据同时作用产生,在内部有三种数据,业务交易数据、流程型数据、交互式数据可以形成变现,外部则是行业数据和互联网等数据等。
电信行业在变现形式上有四个层面,第一、能力平台的变现,基于自身数据提供能力组件,比如位置平台、信用平台;第二、分析能力变现,行业分析报告;第三、运营的变现,为第三方客户提供运营服务;第四、纯数据变现。
目前较为成熟的两种变现形式是能力平台变现和分析能力变现。目前运营商的省级公司基本都已经拥有位置、信用、大数据服务中心等平台,另外针对特定事件的大数据分析也已经很成功。在Teradata天睿公司大中华区通信行业解决方案资深总监姜欣看来,目前的所有变现形式在技术上都可以实现,只是在推广和组织上会有所不同。
数据变现四大模式释放电信大数据价值
Teradata天睿公司大中华区通信行业解决方案资深总监姜欣
西班牙电信的智慧足迹(SmartSteps)就是一款面向零售商的能力平台,该产品基于完全匿名和聚合的移动网络数据,可对某个时段、某个地点人流量的关键影响因素进行分析,并将洞察结果面向政企客户提供。例如,洞察结果可为零售商新店设计和选址、设计促销方式、与客户反馈等提供决策支撑,从而帮助零售商更好地理解和满足客户需求、降低成本;也可帮助政府统计、预测各种场景下的人流量。
在四种数据变现模式之后,现在还有一个新的变化,电信运营商开始和第三方行也跨行业成立合资公司合作运营,通过一定形式双方共同运营数据资产,互相弥补各自数据资产的不足。像中国联通和招商银行合作推出的招联消费消费金融有限公司。
现阶段企业对于大数据变现的市场主要集中在产品层面,例如位置、信用等,产品的优势在于不用涉及其他行业业务,又能够将数据能力进行很好的体现。但未来,一定会向行业进行拓展,开发出上层的产品和服务。
姜欣指出,目前没有得到快速发展这是因为受制于法律法规和对其他行业理解两方面,当然运营商正在努力进行拓展,除了自身大数据部门的作用,同时连同企业以及政府合作,推动行业的融合。Teradata已经帮助中国移动某省公司搭建了产品体验平台,将运营商数据对外进行展示,促成和其他行业间的合作。
电信大数据平台该如何建
早期电信行业的数据分析是通过经营分析系统实现,现在则发展成完整的大数据系统,主要综合BMO三个数据域的数据,其中B域是经分数据,O域是网关类数据,M域是ERP、MIS等系统数据。
现如今大数据平台已经相对完善,主要的问题是让大数据和业务紧密的集合,这就需要解决速度和数量这一对矛盾的问题,所以在数据处理平台基础之上还需要补充充实化等很多能力,像流处理、动态数据仓库、高级分析可视化等技术,实现快速采集、处理、分析、呈现和业务呈现闭环。
“电信运营商的技术实力毋庸置疑,但在大数据领域还要拥抱更多大数据分析技术。”姜欣说道。Teradata的建议是在原有完善的基础设施上将速度再提升,将业务更紧密的结合,用更多技术来丰富现有的架构。
电信行业是Teradata业务的主要行业之一,而电信行业目前一般采用三部分技术:第一、数据平台技术,包括数据仓库、MPP技术、Hadoop,在之上还有内存数据库技术和Spark技术。第二,数据采集上提供TeradataAutomation、TeradataListener流处理技术等。第三,前端BI工具,TeradataAster等。尤其是Teradata统一数据架构(UDA)的高性能数据仓库、数据探索平台、Hadoop平台的组合非常适合电信行业,其中某一部分也可以使用不同品牌的产品进行组合,这一组合尤其解决了运营商的降本增效,让不同的平台做最擅长的事。
在行业的拓展上,Teradata内部通常会组织不同行业的顾问和运营商一起进行交流,分析不同行业的资源整合方案,同时也可以促成不同客户间的交流。姜欣指出,一方面Teradata帮助运营商规划行业需求,另一方面帮助第三方行业看到运营商数据的对其的作用。
大数据技术还在不断地完善,随着新技术的不断提出,大数据平台的可靠性、性能也将随之提升,而随着数据变现模式的深入探索,甚至未来创造出更多的商业模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27