京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据变现四大模式释放电信大数据价值
OTT、管道化、资费调整是近几年电信行业在市场竞争上的主要挑战,但现在电信行业也开始有了巨大的转变,开始通过数据这个金矿来进行变现,利用数据为客户提供产品和服务,而且服务也做的越来越精细和具有针对性,向其他行业中进行拓展。
从目前看来数据变现上,中国和国外的电信运营商都处在不断探索的阶段,在商业层面上并没有很好的收入,但当数据的价值得到认可时,也将会有更大的价值释放。
电信行业四大变现模式
大数据变现主要是通过企业内部和外部两部分数据同时作用产生,在内部有三种数据,业务交易数据、流程型数据、交互式数据可以形成变现,外部则是行业数据和互联网等数据等。
电信行业在变现形式上有四个层面,第一、能力平台的变现,基于自身数据提供能力组件,比如位置平台、信用平台;第二、分析能力变现,行业分析报告;第三、运营的变现,为第三方客户提供运营服务;第四、纯数据变现。
目前较为成熟的两种变现形式是能力平台变现和分析能力变现。目前运营商的省级公司基本都已经拥有位置、信用、大数据服务中心等平台,另外针对特定事件的大数据分析也已经很成功。在Teradata天睿公司大中华区通信行业解决方案资深总监姜欣看来,目前的所有变现形式在技术上都可以实现,只是在推广和组织上会有所不同。
数据变现四大模式释放电信大数据价值
Teradata天睿公司大中华区通信行业解决方案资深总监姜欣
西班牙电信的智慧足迹(SmartSteps)就是一款面向零售商的能力平台,该产品基于完全匿名和聚合的移动网络数据,可对某个时段、某个地点人流量的关键影响因素进行分析,并将洞察结果面向政企客户提供。例如,洞察结果可为零售商新店设计和选址、设计促销方式、与客户反馈等提供决策支撑,从而帮助零售商更好地理解和满足客户需求、降低成本;也可帮助政府统计、预测各种场景下的人流量。
在四种数据变现模式之后,现在还有一个新的变化,电信运营商开始和第三方行也跨行业成立合资公司合作运营,通过一定形式双方共同运营数据资产,互相弥补各自数据资产的不足。像中国联通和招商银行合作推出的招联消费消费金融有限公司。
现阶段企业对于大数据变现的市场主要集中在产品层面,例如位置、信用等,产品的优势在于不用涉及其他行业业务,又能够将数据能力进行很好的体现。但未来,一定会向行业进行拓展,开发出上层的产品和服务。
姜欣指出,目前没有得到快速发展这是因为受制于法律法规和对其他行业理解两方面,当然运营商正在努力进行拓展,除了自身大数据部门的作用,同时连同企业以及政府合作,推动行业的融合。Teradata已经帮助中国移动某省公司搭建了产品体验平台,将运营商数据对外进行展示,促成和其他行业间的合作。
电信大数据平台该如何建
早期电信行业的数据分析是通过经营分析系统实现,现在则发展成完整的大数据系统,主要综合BMO三个数据域的数据,其中B域是经分数据,O域是网关类数据,M域是ERP、MIS等系统数据。
现如今大数据平台已经相对完善,主要的问题是让大数据和业务紧密的集合,这就需要解决速度和数量这一对矛盾的问题,所以在数据处理平台基础之上还需要补充充实化等很多能力,像流处理、动态数据仓库、高级分析可视化等技术,实现快速采集、处理、分析、呈现和业务呈现闭环。
“电信运营商的技术实力毋庸置疑,但在大数据领域还要拥抱更多大数据分析技术。”姜欣说道。Teradata的建议是在原有完善的基础设施上将速度再提升,将业务更紧密的结合,用更多技术来丰富现有的架构。
电信行业是Teradata业务的主要行业之一,而电信行业目前一般采用三部分技术:第一、数据平台技术,包括数据仓库、MPP技术、Hadoop,在之上还有内存数据库技术和Spark技术。第二,数据采集上提供TeradataAutomation、TeradataListener流处理技术等。第三,前端BI工具,TeradataAster等。尤其是Teradata统一数据架构(UDA)的高性能数据仓库、数据探索平台、Hadoop平台的组合非常适合电信行业,其中某一部分也可以使用不同品牌的产品进行组合,这一组合尤其解决了运营商的降本增效,让不同的平台做最擅长的事。
在行业的拓展上,Teradata内部通常会组织不同行业的顾问和运营商一起进行交流,分析不同行业的资源整合方案,同时也可以促成不同客户间的交流。姜欣指出,一方面Teradata帮助运营商规划行业需求,另一方面帮助第三方行业看到运营商数据的对其的作用。
大数据技术还在不断地完善,随着新技术的不断提出,大数据平台的可靠性、性能也将随之提升,而随着数据变现模式的深入探索,甚至未来创造出更多的商业模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16