
机器人技术、大数据、3D打印、新型材料……新技术的浪潮正酝酿一场崭新的工业革命,它将深刻改变制造业和人类生活。而在这场抢占未来发展制高点的竞赛中,嗅觉灵敏的浙商已经行动起来。本报即日起推出《新技术革命的浙江声响》报道,为读者展现浙商抢占先机,拥抱新的成长机遇的精彩一瞥。
当大数据开启一个全新时代,阿里巴巴集团希望能从海量交易数据中挖掘有价值的内容,这当然犹如在大海中航行。但阿里依然是最有资本进行大数据遥想的公司。十年来,阿里数据平台的服务器上,已经攒下了超过100PB的数据。
为马云的鸿鹄之志指导方向的不是新大陆,而是一系列战略布局。
2010年,推出重整的搜索业务“一淘”,2011年收购数据属性公司CNZZ,近期又接连收购友盟、入股新浪微博和高德,抢占数据源;在物流领域,阿里由天猫主导建设了与各大配送公司对接的“天网体系”,目前又牵头成立智能骨干物流网络“菜鸟科技”,构建物流信息数据平台。
阿里大数据已然起手开局。
十年磨剑
2003年的淘宝还是个“小朋友”,一个不起眼的购物平台,远不如当时的易趣名气大,甚至还有人预言淘宝会在18个月内夭折。
18个月后,淘宝让预言夭折了,淘宝交易量几乎呈指数增长,这一年也是淘宝数据的童蒙时代,淘宝“依葫芦画瓢”,学习当时最大的对手——易趣(当时eBay、亚马逊都已成立成熟的商业智能部门)并且拥有了第一款严格意义上的数据产品——“淘数据”,这是一份经营数据的报表,为各业务公司、部门提供经营报表的检索生成工具。
2009年,阿里数据开始进入产品化时代。“淘数据”从一个内部报表系统跃升为内部数据统称。脱胎于“雅虎统计”的工具“量子恒道”,为外部商户提供统计分析工具,用于跟踪自有店铺流量、点击、购买等数据的变化。
这一系列变革之后,阿里最高层提出了“数据开放”。2010年初,淘宝推出“数据魔方”,第一次向市场开放了全局市场数据,这款付费产品成为了大中型商户追捧的数据利器。
当然,简单的数据收集、分析并不能算作是真正的大数据。“其实有很多公司今天已经开始知道数据有用,但是应该收集什么数据、今天收集的数据能解决目前的哪些问题、这些数据未来有用在哪里,这都是我们要思考的问题。”阿里巴巴集团数据委员会会长车品觉表示。
2012年7月,阿里巴巴集团的“聚石塔”正式发布,“数据分享平台”战略全面展开。这意味着,整合阿里旗下所有电商模式的“基石”——大数据平台初步成形,阿里巴巴集团正在重新认识电子商务:成为更强壮的数据平台,服务电商。同时,阿里巴巴B2B公司CEO陆兆禧出任集团首席数据官岗位,向CEO马云直接汇报。马云在“聚石塔”发布的时候宣布了阿里集团未来新战略:平台、金融、数据。
数据觉醒
“阿里本质上,未来会是一家数据运营公司。”集团首席战略官曾鸣说。在新的公司级战略里,阿里巴巴正低调却尽一切努力以数据作为行动新方向。“不能只是讲故事玩概念了,我们到时候亮剑了。”车品觉说。
首当其冲的便是阿里金融。基于采集到的海量企业数据,阿里金融数据团队设计的模型综合了信用记录、成交数额等结构化数据,以及用户评论等非结构化数据,加上外部搜集的用电量、银行信贷等数据,可就放贷与否、放贷额度精准决策,其贷款不良率仅为0.78%。
“比如你是淘宝卖家,你每月的交易额、发货地址、手机号段、家庭住址、性别等等数据都被作为信用评价的一个维度采集起来。”阿里金融负责人举了个最显而易见的例子,“这个维度银行是不可能采纳的,因为他们依然用的是上门调研的方式,人力、时间成本太高,并且也不可能长期跟踪。有时候碎片数据可以反映全局,这种数据在模型中的权重就会比较高。”
事实上,阿里内部对数据的运用不仅仅体现在商业产品上,数据也在大大缩短、简化内部的业务流程。“数据最终的指向是积累的信用,包括个人信用也包括企业信用。我们所做的一切都是在为这个目标服务,首先将数据变成信用,良好的信用又可以取得贷款、获得更好的服务,增加你的财富,这是一个良性循环,也就是数据价值的‘闭环’。”该负责人解释。
刚刚横空出世的“菜鸟网络”,要利用大数据打造一张全国24小时可达的智能物流网络的雄心也已然明朗。根据马云的蓝图,这绝非一个传统的全国物流仓储网络(内部代号地网),而是要以互联网的方式来运营——基于对交易信息的数据挖掘结果以及云计算的方式,来对物流进行全局智能调控(内部代号天网)。“没有大数据的应用,天地两网不可能合一。”菜鸟网络负责人表示。
近期阿里巴巴在移动互联网市场频频出手,未来也许有可能将数据进行融合,用户的各种信息得以呈现在一个全景图里面,即使在完全陌生的城市,借助这种服务,你可以知道附近哪家店支持支付宝付款,微博上哪个网友刚刚在附近的咖啡店歇脚。(本文来自:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01