
车轮互联关勇打造以大数据为核心的开放平台
面对汽车电商风口的到来,2015年5月7日,易观智库联合奥美国际举办了汽车产业互联网峰会。大会邀请行业人士共同探讨了“互联网+汽车”时代的机遇和挑战。下午,车轮互联联合创始人关勇做了主题演讲,与大家分享了相关的前景和发展。
从工具到社区到服务平台的商业模式
谈到车轮互联,大家脑袋里第一时间想到的就是这个图案,车轮不是卖轮胎的公司,我们是一家互联网公司,没有任何线下的团队在做任何线下的事情。到目前为止车轮已经成立两年多,我们有超过1.5亿的APP下载量,现在月活跃用户超过2300万,现在有十及款垂直于移动端的满足车主的生活服务产品。能够在移动端满足用户360度车主的汽车需求。经过两年多的发展,我们在线上的运营和推广过程中,也摸索出了一些经验,迄今为止我们在IOS常年在前几十名,在安卓应用市场里面都是S级和A级的应用。我们也跟很多大佬建立深度的合作,不是为了赚钱,也不是为了通过大佬获取更多的流量和用户,合作的原因,能够跟大佬合作证明了我们有这个服务能力,通过大佬为我们的服务能力做背书。车轮在成立的初始,未来基于车轮的发展我们要经历哪几个阶段,规划了三个阶段,第一个阶段我们会先做工具,先做工具的原因是什么,因为工具很容易找到用户的痛点,满足用户在某一个垂直领域的垂直需求,我们做工具用了两年的时间,现在是中国汽车移动互联网端最大的平台,积累了海量的用户。我们希望在第二个阶段我们能够做一个平台,基于移动端的平台,智能匹配用户,用户属性、用户需求的平台。能够产生社交关系的,能够引导用户产生更多并发性行为,所以我们要做社区。我们要做一个基于车主服务的社区,我们要体现出我们社区的主属性,体现出我们社区的主导性。谈到社区要做的车主社区不是伪命题,在今天我们看到有车友会,车主和车主之间会基于对方车会认同这个车,能形成一定的社区和社交的范围。我们的社区没有诞生之前我们已经基于工具有了很粗的大腿,我们的工具,这些工具的用户都会成为社区里面的种子用户。在第三个阶段,我们希望去做一个服务平台,以车轮作为纽带,移动互联网作为载体,把很多线下,优秀的合作伙伴聚集到车轮的平台上,通过车轮的平台给我们线上用户提供更多优质的线下服务,做一个很好的合理的有逻辑的整合,我们的用户在线上,服务和体验得到进一步的升级,让我在线下的合作伙伴得到更多的商业机会和商业模式的创新。
价值化和标准化是服务的前提
能够做服务平台也要具备几个前提,我们给线下的合作伙伴输出价值的能力,迄今为止我已经跟很多线下平台方的合作伙伴都有合作,在新车、二手车、保养、车险各个领域里面我们都做了很多的测试。给我们的合作伙伴提供价值的能力是非常强的。举个例子,我现在是易车除了自己的主平台以外最大新车交易例子来源,我每天会有数万辆的,我提供二手车的例子可能超过58、或者赶集,第一个要给合作伙伴创造足够多的价值。第二个是要足够理解市场。最早两年多之前,我跟我的合伙人都是做游戏的,我们根据不懂汽车市场,我们可以跳出这个圈子用第三方的眼睛看这个市场,看产品创新,未来怎么玩,我们在用游戏的方法在玩汽车产品。
第一阶段对接所有的服务都是标准化的服务,合作伙伴赢、我们赢、我们的用户赢。有三个点,工具的特点是可以快速吸引大量用户的下载,大量的流量,把工具进行双向的分发,一方面分发到社区,同时会把工具的用户带到服务的平台里,让用户在服务平台里面得到更好的服务。同时在社区的互动板块摘离出来,让服务平台不至于变成干巴巴的服务导航。同时把服务平台以后服务板块摘出来,让整个平台的服务属性变得更强。
数据产品化是发展的方向
车轮是家移动互联网公司,对我们来说最重要的不是市场,不是BD而是产品,一直秉承几个大的原则,所有的产品都是给用户提供服务的,无论是社区、工具都是提供服务的。在基于差异化服务的基础上,所有的用户行为希望数据化,在拿到用户在产品体验过程中的大数据不是要卖钱,要商业化,要看到我们的缺点在哪里,优点在哪里,同时优化我们的产品。数据产品化是我们一直很坚持的一个点。
在移动互联网时代我们认为快是很重要的,我们认为移动互联网是唯快不破的,要抓重点,抓住足够多的重点才能有足够多的精力去做足够对的事情。创新,当然在中国创新是有风险的,要不要创新,我认为还是要创新。数据,一定要全盘思考,不要决定一个点。车轮是家数据公司,让我们看到风险在哪里,未来怎么做,我们做的所有事情都是以数据为核心的,做开放平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29