京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基层工商大数据运用思考与建议
工商部门作为市场主体的入口和主要监管部门,掌握了市场主体从出生到消亡的大数据。为更好地运用大数据,探索便民高效、务实管用的服务监管机制,重庆市工商局沙坪坝区分局就大数据运用工作进行了调研思考,并提出了对策建议。
存在的主要问题
数据采集渠道相对分散。目前我局数据的采集渠道主要分为3种:一是通过综合业务系统采集工商内部数据,二是通过企业信用信息公示系统采集辖区各企业数据,三是其他数据由各部门自行采集。数据分散、整合度不高的问题突出。
数据质量过于粗糙。一是数据失真。企业在填报年报数据时,为逃避税收,往往虚报营业额、资本金等数据。二是数据有瑕疵。由于企业数据录入人员责任心不强等原因,导致数据填写不全、逻辑错误、前后不一等问题突出。比如,在2014年度年报中,我局辖区烟草公司共提供3000多条数据,但数据没有填写营业执照号等项目,只填写了企业名称等项目,无法与工商数据进行整合,最后只有100多条数据比对成功,数据比对成功率仅为3%。
数据采集时间相对滞后。按照《企业信息公示暂行条例》的规定,企业应在即时信息形成之日起20日内进行公示。但由于部分企业不了解政策规定、不重视信息公示或平时业务繁忙忘记公示等原因未及时公示信息。
采集手段缺乏强制性。按照《企业信息公示暂行条例》的规定,企业未按规定报送公示信息,将被列入经营异常名录。工商部门每年按照3%~5%的比例进行抽查,被抽查到的概率很小;即使被抽查到,也可以通过补录然后申请移出经营异常名录,因此这种手段对企业缺乏强制性。
数据分析方法过于简单。现行的工商数据分析一般是通过分析报表,进行简单的、初级层面的加减运算,形成辖区市场主体发展分析报告和商标、电商、广告、合同、消费维权等各业务监管现状分析。然而,这些数据是可以通过数据挖掘、关联分析、云计算等专业统计分析方法进行高层次的深度分析,发现影响社会经济发展的系统性因素,为政府进行宏观决策提供参考。
对策建议
充分利用现代信息技术,建立统一的数据采集平台。针对现行数据采集渠道分散的问题,建立统一的微信平台进行数据采集。将辖区各部门的数据,通过数据库桥接配置与该微信平台进行对接,真正实现部门间数据共享。开发“一键报送”功能,各企业用户通过扫描该微信平台二维码,真正实现年报信息、即时信息快速上传,实现企业和政府部门之间数据共享。开发“一键投诉”功能,消费者可以通过该微信平台快速举报,也为工商部门采集了消费维权数据。开发“一键上传”功能,各街镇、社区通过该微信平台将日常检查中发现的情报信息实时上传,为工商部门采集社会监督数据。
制定数据采集规范,建立统一的数据质量标准。针对数据质量相对粗糙的问题,积极争取当地政府的支持,尽快出台辖区数据采集规范,统一数据采集标准。采取“一表填报”的方式,各部门按照标准要求,按照时间顺序,使用统一表格进行数据填报。比如,企业在办理注册登记时,由工商部门在该表上填报登记信息。企业在办理行政审批时,由相关部门继续在该表上补充许可信息。税务、银行等部门和机构按照时间顺序在该表上录入相应数据。
建立自动提示报警系统,提高数据报送实效性。针对数据采集时间相对滞后的问题,开发新软件,建立自动提示报警系统。比如,企业形成即时信息20日内未报送即时信息的,平台每日发送短信或微信提醒企业;企业超过20日未报送的,平台发送报警短信或微信告知企业;企业被列入经营异常名录的,平台每日发送短信或微信提醒企业,同时将名单用短信或微信发送给各部门和公众,让企业接受部门和社会监督。
多措并举,提高数据分析水平。一是开发“企业信用体检”功能,通过对数据的加工处理和模型构建,模拟人体医学体检形式,对辖区企业进行“信用体检”,全面掌握企业整体健康状况及趋势变化,并一键生成企业信用体检报告。二是加强与高校、科研机构的合作,完善工商数据分析模式。三是主动购买第三方专业机构服务,将海量数据进行分析比对,挖掘有效信息,出具专业的分析报告,为政府科学决策提供有效依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07