京公网安备 11010802034615号
经营许可证编号:京B2-20210330
IBM的研究称,在整个人类文明所获得的全部数据中,有90%是在过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到现在的44倍。
正如哈佛大学社会学教授加里·金所说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”伴随着移动互联网的普及,新增长的数据数量更加远远超过互联网时代。海量信息时代,如何对让数据产生价值,如何让数据更好地服务人们的日常生活,如何规避数据可能产生的风险,大数据的相关探讨就此提上案头。
什么是大数据? 信息采集、管理和应用是内涵
互联网的产生伴随着数据的产生,数据也成为人们日常生活的一部分。但是,大数据究竟是什么?
“随着网络的全球化和全球网络化,人类生活方式和生产方式都有一个彻底的改变,人们都对海量信息有所依赖,包括海量信息的采集,海量信息的处理,海量信息的应用,这个过程就是大数据时代的发展。”在日前举办的中美大数据高端论坛上,北京市经济和信息化委员会副主任梁胜谈到,大数据可以理解为数据的采集,数据的处理和数据的应用,“这是提高我们认识这个社会的能力的过程,也是不重复劳动的一个很重要的过程。”
从具体的应用角度来看,IDG资本副总裁牛奎光认为,大数据包括大交易数据、大交互数据和大机器数据,包括越来越发达的移动互联网带来的相关位置数据。
从数据价值的角度,TalkingData互联网数据中心创始人崔晓波认为,大数据可以分为三类:第一类是网络基础信息数据,包括终端信息、网络信息,甚至包括无线和IP网点信息。第二类是应用相关的信息,主要是大量嵌入的移动信息。第三类是跟客户交易的信息,包括浏览信息。
无论是从时代的宏观角度还是数据应用及数据价值的微观角度,专家们都注重大数据的信息价值和所能带给人们生活的服务价值。大数据时代,对人们活动所产生数据的管理、挖掘和应用是大数据的内涵所在。
大数据价值何在? 服务用户,推动社会发展是深度价值
大数据的价值不仅体现在互联网企业的运营上,更体现在为现代生活服务上,包括政府、交通、医疗、教育等各个领域。
阿里巴巴数据科学家杨滔通过阿里巴巴实际项目阐释了大数据的价值,他表示,他的团队以大数据为原材料,以机器学习和数据挖掘技术为工具,提升了阿里巴巴业务部门的业绩。并且,在应用实践过程中,通过大数据研发核心算法和模型,可以为用户提供更个性化的产品服务。
淘宝网数据人员开发的达人模型算法就是一个实例。数据人员通过用户经常购买的商品得到其基本数据,每个用户结果不同,然后数据分析师将用户分到不同的群体,在这个群体中再找到淘宝网达人买家,用达人买家喜欢的商品来给用户做推送,提升用户个性化的体验。“可能你是一个大学生,可能你是一个都市的美少女,可能你是一个小城网络的贵妇。我们给用户分成了很多类,然后通过达人推荐,不同的气候,不同的季节会有不同的调整,最后我们会有反馈,这都是通过大数据分析出来的。”杨滔说道。
互联网领域之外,大数据将产生更大的价值。“大数据产业应用领域广阔。在科学研究方面,如生态监测,全球海洋监测网现在有3500多个浮标在大洋当中,能够监测海水的温度、水流的动向,能够准确做天气预报。除了自然科学以外,还在社会科学、在线教育平台、政府反腐、城市交通安排、工业互联网、金融业等领域发挥重要作用。”云华时代产业运营总监孟晔表示,大数据确实能够推动科技的进步。
DCCI的互联网数据中心创始人胡延平则用一句话概括了大数据的价值,“如果只是日常的游戏、休闲娱乐,这是大数据初级应用阶段。高级阶段的大数据将深入到生活,深入到日常的工作中。”不论是从生活还是工作来说,大数据都将是未来社会的推动力。
大数据有哪些问题? 开放性、 标准化和安全性 三大核心问题
作为新媒体时代的一个新兴行业,大数据在发展的同时存在问题。目前来看,数据开放性、数据标准化管理和数据安全是大数据必须面对的三大核心问题。
对于数据开放性问题,崔晓波认为,中国更需要开放的数据。“我曾与很多互联网广告平台商交流,对于同一个指数,他们每一家都有一些数据,但是每家数据都有差别。中国的数据缺乏流动性和开放性,这也导致了中国互联网广告业态没有做起来,当广告公司自己没有数据时,很难找到一个第三方买到相应的数据。在这方面,中国的资源是很稀缺的。”
与互联网相比,移动互联网的数据则欠缺标准。“目前移动互联网很多数据都不太标准,不太规范。在互联网上的数据衡量标准基本是一致的,UV(网站独立访客)的算法很一致,但移动互联网还没有完成标准化的过程。”崔晓波说。
木瓜移动市场副总裁常乐则认为,技术问题也是大数据当前所面临的问题之一。“作为企业,作为政府,作为小的开发者,如何把所有的数据结合起来分析是一个难题。”他谈到,从技术角度看,现在的技术或者是分析工具,远远达不到大数据发展的要求。
此外,现任美国Visa公司高级战略规划领导人Farshchi还表示,数据安全应用是大数据时代企业面临的严峻挑战。“譬如一个银行体系和金融体系,拥有庞大的数据,需要防卫来自世界各个方面的攻击,这实际上是一项非常具有挑战性的工作。而且还有一个特性,对于这些攻击者来讲,只要有一次成功就成功了,可是对于企业来讲,需要投入大量的人力物力来进行防范。”(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16