京公网安备 11010802034615号
经营许可证编号:京B2-20210330
IBM的研究称,在整个人类文明所获得的全部数据中,有90%是在过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到现在的44倍。
正如哈佛大学社会学教授加里·金所说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”伴随着移动互联网的普及,新增长的数据数量更加远远超过互联网时代。海量信息时代,如何对让数据产生价值,如何让数据更好地服务人们的日常生活,如何规避数据可能产生的风险,大数据的相关探讨就此提上案头。
什么是大数据? 信息采集、管理和应用是内涵
互联网的产生伴随着数据的产生,数据也成为人们日常生活的一部分。但是,大数据究竟是什么?
“随着网络的全球化和全球网络化,人类生活方式和生产方式都有一个彻底的改变,人们都对海量信息有所依赖,包括海量信息的采集,海量信息的处理,海量信息的应用,这个过程就是大数据时代的发展。”在日前举办的中美大数据高端论坛上,北京市经济和信息化委员会副主任梁胜谈到,大数据可以理解为数据的采集,数据的处理和数据的应用,“这是提高我们认识这个社会的能力的过程,也是不重复劳动的一个很重要的过程。”
从具体的应用角度来看,IDG资本副总裁牛奎光认为,大数据包括大交易数据、大交互数据和大机器数据,包括越来越发达的移动互联网带来的相关位置数据。
从数据价值的角度,TalkingData互联网数据中心创始人崔晓波认为,大数据可以分为三类:第一类是网络基础信息数据,包括终端信息、网络信息,甚至包括无线和IP网点信息。第二类是应用相关的信息,主要是大量嵌入的移动信息。第三类是跟客户交易的信息,包括浏览信息。
无论是从时代的宏观角度还是数据应用及数据价值的微观角度,专家们都注重大数据的信息价值和所能带给人们生活的服务价值。大数据时代,对人们活动所产生数据的管理、挖掘和应用是大数据的内涵所在。
大数据价值何在? 服务用户,推动社会发展是深度价值
大数据的价值不仅体现在互联网企业的运营上,更体现在为现代生活服务上,包括政府、交通、医疗、教育等各个领域。
阿里巴巴数据科学家杨滔通过阿里巴巴实际项目阐释了大数据的价值,他表示,他的团队以大数据为原材料,以机器学习和数据挖掘技术为工具,提升了阿里巴巴业务部门的业绩。并且,在应用实践过程中,通过大数据研发核心算法和模型,可以为用户提供更个性化的产品服务。
淘宝网数据人员开发的达人模型算法就是一个实例。数据人员通过用户经常购买的商品得到其基本数据,每个用户结果不同,然后数据分析师将用户分到不同的群体,在这个群体中再找到淘宝网达人买家,用达人买家喜欢的商品来给用户做推送,提升用户个性化的体验。“可能你是一个大学生,可能你是一个都市的美少女,可能你是一个小城网络的贵妇。我们给用户分成了很多类,然后通过达人推荐,不同的气候,不同的季节会有不同的调整,最后我们会有反馈,这都是通过大数据分析出来的。”杨滔说道。
互联网领域之外,大数据将产生更大的价值。“大数据产业应用领域广阔。在科学研究方面,如生态监测,全球海洋监测网现在有3500多个浮标在大洋当中,能够监测海水的温度、水流的动向,能够准确做天气预报。除了自然科学以外,还在社会科学、在线教育平台、政府反腐、城市交通安排、工业互联网、金融业等领域发挥重要作用。”云华时代产业运营总监孟晔表示,大数据确实能够推动科技的进步。
DCCI的互联网数据中心创始人胡延平则用一句话概括了大数据的价值,“如果只是日常的游戏、休闲娱乐,这是大数据初级应用阶段。高级阶段的大数据将深入到生活,深入到日常的工作中。”不论是从生活还是工作来说,大数据都将是未来社会的推动力。
大数据有哪些问题? 开放性、 标准化和安全性 三大核心问题
作为新媒体时代的一个新兴行业,大数据在发展的同时存在问题。目前来看,数据开放性、数据标准化管理和数据安全是大数据必须面对的三大核心问题。
对于数据开放性问题,崔晓波认为,中国更需要开放的数据。“我曾与很多互联网广告平台商交流,对于同一个指数,他们每一家都有一些数据,但是每家数据都有差别。中国的数据缺乏流动性和开放性,这也导致了中国互联网广告业态没有做起来,当广告公司自己没有数据时,很难找到一个第三方买到相应的数据。在这方面,中国的资源是很稀缺的。”
与互联网相比,移动互联网的数据则欠缺标准。“目前移动互联网很多数据都不太标准,不太规范。在互联网上的数据衡量标准基本是一致的,UV(网站独立访客)的算法很一致,但移动互联网还没有完成标准化的过程。”崔晓波说。
木瓜移动市场副总裁常乐则认为,技术问题也是大数据当前所面临的问题之一。“作为企业,作为政府,作为小的开发者,如何把所有的数据结合起来分析是一个难题。”他谈到,从技术角度看,现在的技术或者是分析工具,远远达不到大数据发展的要求。
此外,现任美国Visa公司高级战略规划领导人Farshchi还表示,数据安全应用是大数据时代企业面临的严峻挑战。“譬如一个银行体系和金融体系,拥有庞大的数据,需要防卫来自世界各个方面的攻击,这实际上是一项非常具有挑战性的工作。而且还有一个特性,对于这些攻击者来讲,只要有一次成功就成功了,可是对于企业来讲,需要投入大量的人力物力来进行防范。”(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27