
大数据颠覆传统医疗,或许并不遥远
如果一个医生还在抱怨病人得了“搜索病”(指看病前习惯先上网查查自己可能得了什么病),那么这个医生大概已经落伍了。基于大数据在医疗领域的深度应用,美国斯坦福大学医学院一群富有创新精神的医学专家正和硅谷的医疗产业专家合作,推进一个最新的科研项目——“和你一样的病人”,通过这个智能系统,病人有望自查疾病,这也减少了医生因经验累积有限而导致的误诊或漏诊。这个系统有望成为医生的好帮手,也可能颠覆现有的医疗模式。
这是斯坦福大学医学院院长劳埃德·米诺在昨天的第九届21世纪中美医学论坛新闻发布会上向记者透露的信息。据悉,本次论坛将于10月14日-16日在斯坦福大学医学院召开,它由斯坦福大学、美国萨尔克生物研究所、上海瑞金医院共同主办,届时包括美国“四院院士”ShuChien教授、美国约翰霍普金斯大学前任校长William Brody教授、中国工程院院士王振义教授、世界卫生组织前副总干事胡庆澧教授、中国工程院院士陈赛娟教授等多位中美医学专家,将共同探讨当下医学界最热门的一个话题——“大数据时代背景下的医疗发展趋势”。
计算机筛选最优治疗方案
信息化已逐渐深入到医疗卫生的各个领域,成为医疗卫生事业发展的重要引擎,但由于医疗是高度专业化的领域,此前大多数信息化包括所谓“互联网+”与医疗的合作,依然是以医疗为核心,互联网只是服务于医疗的工具,比如,在线预约、在线挂号等。上海交大医学院副院长陈红专称,当下我们需要思考如何创新应用互联网,以及挖掘出海量数据的真正应用,而不仅仅是积累数据。
在斯坦福大学医学院,已有令人“脑洞大开”的科研进展。医生们开发的这个名为“和你一样的病人”的系统里,积累了上百万条药物、治疗方案、病例信息等数据,登录者键入身体状况、年龄、不适部位等,系统就会给出一个完全个性化的诊断结果以及理想的治疗方案。
“这种系统筛选出的治疗方案,可能比医生的方案效果更好,能让更多病人获得真正属于他们的最优治疗。因为我们都知道,医生的治疗水平很大部分来自于医学积累,也就是经验,但这种积累不论是30年还是50年,依然是有限的,它一定没有拥有全病人就医数据的电脑系统见多识广。”劳埃德·米诺对记者说。
反思传统“一对一”就医模式
事实上,促成劳埃德和伙伴们开发这个系统的机缘,是对传统就医模式的反思。
那是在1998年,劳埃德和同事在全世界首次报道了一种罕见病——“上半规管裂损症候群”。这种疾病的患者会出现眩晕、对声音异常敏感等症状。这本是一次很普通的学术发现,但令劳埃德意外的是,当他们发表了论文后,世界上许多国家的人开始上网搜索这个病的信息,并输入自己的信息,一批多年来找不到病因或在其他科室苦苦试验治疗方案的病人终于确诊。比如,英国就报道过一名女子罹患这种疾病,不仅能听见自己的心跳声、大脑搅动声,连吃颗苹果对她来说都是不可能的任务,因为她轻轻一咬,就是一阵震耳欲聋。
通过互联网找到“和你一样的病人”,这个启示让劳埃德和斯坦福医学院的同仁们开始开发这款全新的系统。
基于大数据应用,未来的看病模式很可能不再是现在这样与医生“一对一”。在哈佛大学医学院,已有医生尝试给乳腺癌患者这样看病:通过系统筛查全美乳腺癌患者病历,并挑出和具体患者相同或相似的年龄、生活环境、突变基因等,最终挑选出一个生存期、生活质量最高的治疗方案提供给患者。这是目前医生寻求“外脑”帮助的有效途径。
深度开发大数据预测疾病
此外,未来的医疗数据收集也将不再局限于诊室。瑞金医院副院长宁光教授以糖尿病为例介绍,借助可穿戴设备的开发,谷歌眼镜血糖监测、家庭床上血糖监测与数据远程传输等应用已经在小范围应用。“通过疾病管理,进而深度开发这些大数据,提取有价值的信息,有望开启医疗产业的新黄金时代。”宁光说。
可以畅想的是,医疗大数据带给人们的将不仅仅是更优的诊断与治疗计划,而是更优的生活方式。劳埃德·米诺说,通过医疗大数据的挖掘和筛选,还能前移到发现何种生活方式可能是更有利的,从而给政府、医保政策制定者、医院以及大众更好的生活方式指导。“那就是预防甚至预测疾病的范畴,我们已在和谷歌、苹果公司合作,也将与更多中国科学家合作。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29