京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据人才严重欠缺 高薪机会似乎并不难找
随着大数据的流行,新的工作机会将留给那些有准备的人。现在,人们可以很方便地通过网络学习最新的科技知识,没有时间、金钱和地域限制。即使在巴基斯坦的一个小村庄里,年轻人也可以通过网络学习高级数据训练课程。
像BigDataUniversity这样的新型网络学习平台已经推出了新的学习频道,用户不用花费一分钱,就能学习到关于大数据的知识。对于现在的互联网行业来说,免费这一模式似乎比收费更加受人欢迎。
比如,像巴基斯坦这样的欠发达国家,大学学费往往很高,普通人上不起。不过,巴基斯坦的年轻人现在就完全可以通过网络学到西方国家那些先进的技术知识。类似哈佛大学和麻省理工这样的顶尖学府都开放了大量的免费优质课程,年轻人可以通过这些课程学习如何成为一名数据科学家。
数据分析师大量欠缺,要抓住机会
大数据的普及带来了很多新的工作岗位。现在优秀的数据科学家严重缺乏,就算西方国家的大学在数据分析专业里招了很多学生,这些学生的数量也远远无法满足如今市场的需求。知名咨询公司麦肯锡此前发布的一项报告预测,市场上的数据分析师将会出现严重的缺口。到2018年,美国将会缺少150万懂得如何利用大数据来帮助公司做出有效决定的专业人员,在精通数据分析的人才方面,美国也将会面临14万到19万人的缺口。
像菲律宾和巴基斯坦这样的国家,政府可能也想抓住大数据行业的这一发展机会。这些政府认为,与其把年轻人送到中东国家当一个只能拿到当地最低工资的建筑工人,或者让年轻人去西方国家当地位低下的保姆,不如让他们学习如何进行大数据的分析处理,成为一名具有国际化视野的数据分析人才。
你只需要能上网就行
好消息是,现在发展中国家的年轻人不需要远渡重洋去国外留学才能学到大数据的专业知识了。只要你能上网,你就能学习。
像Coursera、Udacity这样的网站都提供大量的课程,这些课程会像你在学校里学习一样,每堂课会布置作业,你需要按时交作业,课程结束后你还能得到结课证书。在Coursera上你可以学习世界顶尖大学的课程,比如约翰霍普金斯大学的课程。Udacity则提供很多新的学习方式,比如nonodegree,在这里你花一两千美元就能成为一个专业的网站开发师或者数据分析师。这些网站已经吸引了大量的用户,很多人在这里学习新知识。
Coursera商业发展部负责人Julia Stiglitz最近撰写的一篇文章指出,数据分析是目前Coursera网站上最流行的一门课程。美国的顶尖大学都愿意接受这种新的授课方式,这些大学给像Coursera这样的网络学习平台提供了大量优质的公开课视频。所以,你还在担心你通过网络学不到最尖端的数据分析知识吗?
你学到了知识,然后呢?
不过,你可不要认为,只要学习到数据分析的必备知识,你就能成为一个好的数据科学家了。有机构对一些顶尖的数据科学家进行过调查,这些科学家认为,要想成为一个优秀的数据分析家,你还必须做到以下几点。
第一, 训练自己的多模式思维
现实生活中一件事往往有多种解决方案,最佳解决方案会是不同的想法和解决思路碰撞的结晶,而这些想法和解决思路的来源往往也不尽相同。一个企业会从各种渠道收集信息,你需要学习在每个渠道中提取有用的数据信息进行分析,再把这些分析结合到一起去,从而找出最佳解决方案。
第二, 把它当成职责而不仅仅是一份工作
你未来的同事会希望你把这份数据研究的工作当成是一种职责,他们想听到你对于数据如何改变生活的看法。你应该用具体的例子来支持你的看法,如果你有相关工作经验更好。
第三, 扩展交际圈
在商业上,扩展人脉一直很重要,所以下班后多多出去看看吧。如果你想成为数据领域内的专家,你应该多接触这个领域内的人。多去参加那些关于大数据的论坛、讲座等活动,多关注一些关于大数据的社交媒体账号。如果你的熟人在一家优秀的大数据公司工作,当他们有职位空缺时,他们会想到你。这便是扩展交际圈带来的好处之一。
第四, 多尝试使用新工具
经常下载新的软件包试用。在GitHub和一些类似的技术论坛上,经常会有人上传自己编写的程序供大家免费试用。你可以帮忙修改这些程序中的bug,通过你自己的不断修改与不断完善,你觉得bug改得差不多了,就可以把完善后的程序放到GitHub。如果程序还不错,或许就会有人注意到你。通过这种方式,你可以显示出自己是个具有创新精神的数据分析员,能够独立解决问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09