
研究机构比企业更缺大数据专业人才
为了能够及时应对大数据时代带来的挑战,国内学术界最近有着不少新动静。中科院院士马志明近日就发表了这样的声明,上月他几乎每个礼拜都可以看到一家全新的、和大数据相关的研究机构或研究平台诞生。从中科院系统内部培育的重点实验室到国家基金委的“双清论坛”,再到日前上海财经大学携手国家统计局成立“大数据统计科学中心”—一个信号已经非常清晰:对大数据的深挖和系统研究,已是板上钉钉的国家性质的结构战略。
“在大数据时代,数据科学家和数据工程师非常紧缺。”根据一些机构的测算,未来5年,国内各行各业需要的大数据专业人才,缺口将高达1000万左右。
对海量数据信息的处理手段还远不够
大数据正给各行各业带来巨变。以保险业的车险为例,如果在每辆汽车上加载一个行驶监测设备,保险公司就可以轻松掌握每一个用户的车辆使用情况、个人驾驶习惯等。基于这些关键数据,保险公司就可以针对不同的用户“定制”不同的车险品种,从而提高投保的精准率。
上海财经大学统计与管理学院院长周勇教授说,无论是学术界还是企业界都已察觉,大数据是一座“富矿”,对大数据的收集、深挖过程,本身就伴随着很多的发展机会。
但开掘“富矿”并不容易。比如,对海量数据信息的处理手段,目前还远远不够。有业内人士做过测算,假设一个城市有3万个左右摄像头,在不经任何加工的情况下原始保存连续两个月的图像信息,耗资将高达上百亿元人民币。除了要解决数据存储的基础设施问题,如何从海量的图像信息中提取有效信息,也是目前学界正在加紧研究的课题。
“过去10年至15年来,基于互联网的信息技术革命已给全人类带来了颠覆性影响,信息科学从某种程度上说,已成为推动经济发展的一个重要引擎。现在还可以预见的是:在未来的几十年时间里,更多与经济社会发展相关的决策,都会被大数据推着走。”美国普林斯顿大学终身教授、上海财经大学大数据统计科学中心首席科学家范剑青教授说,对大数据的研究固然涉及众多学科、领域,但按照目前美国学术界的共同看法,数学、统计学和计算机科学的三者结合是构成分析、研究大数据的基础。
研究机构比企业更缺大数据专业人才
随着大数据时代的到来,专业数据处理人才已从“走俏”变成“紧缺”。“过去我们的毕业生一般喜欢到金融机构、保险机构等单位就业,做一些和数据分析相关的工作。但现在,互联网公司、大型药企都开出高薪抢人。”周勇说。颇有意思的是,来自企业的高薪揽才,客观上让学术界“尴尬”:“现在最需要、最缺少大数据专业人才的其实是高校和研究机构。高起点、高水平的研究亟需高层次的人才加盟,但因为科研机构的待遇不如企业,留住人才成了一桩难事。”
大数据“捧红”了作为传统学科的统计学;但另一方面,统计学受到的来自大数据的挑战,也比其他学科要猛烈得多。
“在大数据时代,很多传统的数据收集方法、统计方法显得失效,而且用统计的手段进行经济预测的功能,也出现了根本性的变革。”据介绍,国家统计局目前已经在和百度、阿里巴巴等互联网公司合作,深度开发挖掘大量实时在线的搜索数据,从而提升统计数据的准确性和及时性。过去,统计数据对经济走势预测、对宏观决策的作用往往是“用过去的经验来预测未来”,而今后,“经济雷达”在预测、预警时发挥的功效会显得更具时效性。
“有了互联网、大数据,收集信息的渠道和时效明显增强,无论是专业的统计部门还是智库,不用再为拿不到真实数据而烦恼了。”也有一位统计学专家告诉记者,虽然数据来源多样、获取渠道多样是大数据时代的“红利”,但它同时也滋生出信息安全、用户隐私权保护方面的新问题。
“学界与业界对大数据带来的变革和挑战有不同层次的关注、感受,业界有强烈的问题驱动,学界则对面临的学术任务非常明晰。”上海财经大学校长樊丽明说,上海财大此次联合国家统计局成立“大数据统计科学中心”,初衷就是聚焦国家战略,形成在大数据研究、社会经济统计等领域的合作研究项目,以学校的优势学科服务上海科创中心建设。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18