京公网安备 11010802034615号
经营许可证编号:京B2-20210330
研究机构比企业更缺大数据专业人才
为了能够及时应对大数据时代带来的挑战,国内学术界最近有着不少新动静。中科院院士马志明近日就发表了这样的声明,上月他几乎每个礼拜都可以看到一家全新的、和大数据相关的研究机构或研究平台诞生。从中科院系统内部培育的重点实验室到国家基金委的“双清论坛”,再到日前上海财经大学携手国家统计局成立“大数据统计科学中心”—一个信号已经非常清晰:对大数据的深挖和系统研究,已是板上钉钉的国家性质的结构战略。
“在大数据时代,数据科学家和数据工程师非常紧缺。”根据一些机构的测算,未来5年,国内各行各业需要的大数据专业人才,缺口将高达1000万左右。
对海量数据信息的处理手段还远不够
大数据正给各行各业带来巨变。以保险业的车险为例,如果在每辆汽车上加载一个行驶监测设备,保险公司就可以轻松掌握每一个用户的车辆使用情况、个人驾驶习惯等。基于这些关键数据,保险公司就可以针对不同的用户“定制”不同的车险品种,从而提高投保的精准率。
上海财经大学统计与管理学院院长周勇教授说,无论是学术界还是企业界都已察觉,大数据是一座“富矿”,对大数据的收集、深挖过程,本身就伴随着很多的发展机会。
但开掘“富矿”并不容易。比如,对海量数据信息的处理手段,目前还远远不够。有业内人士做过测算,假设一个城市有3万个左右摄像头,在不经任何加工的情况下原始保存连续两个月的图像信息,耗资将高达上百亿元人民币。除了要解决数据存储的基础设施问题,如何从海量的图像信息中提取有效信息,也是目前学界正在加紧研究的课题。
“过去10年至15年来,基于互联网的信息技术革命已给全人类带来了颠覆性影响,信息科学从某种程度上说,已成为推动经济发展的一个重要引擎。现在还可以预见的是:在未来的几十年时间里,更多与经济社会发展相关的决策,都会被大数据推着走。”美国普林斯顿大学终身教授、上海财经大学大数据统计科学中心首席科学家范剑青教授说,对大数据的研究固然涉及众多学科、领域,但按照目前美国学术界的共同看法,数学、统计学和计算机科学的三者结合是构成分析、研究大数据的基础。
研究机构比企业更缺大数据专业人才
随着大数据时代的到来,专业数据处理人才已从“走俏”变成“紧缺”。“过去我们的毕业生一般喜欢到金融机构、保险机构等单位就业,做一些和数据分析相关的工作。但现在,互联网公司、大型药企都开出高薪抢人。”周勇说。颇有意思的是,来自企业的高薪揽才,客观上让学术界“尴尬”:“现在最需要、最缺少大数据专业人才的其实是高校和研究机构。高起点、高水平的研究亟需高层次的人才加盟,但因为科研机构的待遇不如企业,留住人才成了一桩难事。”
大数据“捧红”了作为传统学科的统计学;但另一方面,统计学受到的来自大数据的挑战,也比其他学科要猛烈得多。
“在大数据时代,很多传统的数据收集方法、统计方法显得失效,而且用统计的手段进行经济预测的功能,也出现了根本性的变革。”据介绍,国家统计局目前已经在和百度、阿里巴巴等互联网公司合作,深度开发挖掘大量实时在线的搜索数据,从而提升统计数据的准确性和及时性。过去,统计数据对经济走势预测、对宏观决策的作用往往是“用过去的经验来预测未来”,而今后,“经济雷达”在预测、预警时发挥的功效会显得更具时效性。
“有了互联网、大数据,收集信息的渠道和时效明显增强,无论是专业的统计部门还是智库,不用再为拿不到真实数据而烦恼了。”也有一位统计学专家告诉记者,虽然数据来源多样、获取渠道多样是大数据时代的“红利”,但它同时也滋生出信息安全、用户隐私权保护方面的新问题。
“学界与业界对大数据带来的变革和挑战有不同层次的关注、感受,业界有强烈的问题驱动,学界则对面临的学术任务非常明晰。”上海财经大学校长樊丽明说,上海财大此次联合国家统计局成立“大数据统计科学中心”,初衷就是聚焦国家战略,形成在大数据研究、社会经济统计等领域的合作研究项目,以学校的优势学科服务上海科创中心建设。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01