
大数据应用案例:改善人们生活
大数据现在正在逐渐地升温,因为它确实能给人们的生产生活带来便利,现在数据观就带大家看看大数据应用在哪些方面。
大数据应用的八个典型案例
什么是大数据?不要再举例说啤酒和尿布的例子了,Gartner的分析师Doug Laney在讲解大数据案例时提到过8个更有新意更典型的案例,可帮助更清晰的理解大数据时代的到来。
1. 梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2. Tipp24 AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3. 沃尔玛的搜索。这家零售业寡头为其网站Walmart.com自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4. 快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。查看原文
大数据应用的九个领域
大数据应用在生活中可以帮助我们获取到有用的价值。
随着大数据的应用越来越广泛,应用的行业也越来越低,我们每日都可以看到大数据的一些新颖的应用,从而帮助人们从中获取到真正有用的价值。许多组织或者个人都会受到大数据的剖析影响,但是大数据是怎样帮助人们挖掘出有价值的信息呢?下面就让我们一起来看看九个价值极度高的大数据的应用,这些都是大数据在剖析应用上的关键领域:
1.理解客户、满足客户服务需求
大数据的应用现在在这领域是最广为人知的。重点是怎样应用大数据更好的了解客户以及他们的喜好和行为。企业极度喜欢搜集社交方面的数据、浏览器的日志、剖析出文本和传感器的数据,为了更加全面的了解客户。在通常情况下,创建出数据模型进行预测。好比美国的著名零售商Target就是通过大数据的剖析,获得有价值的信息,精准得预测到客户在什么时间想要小孩。另外,通过大数据的应用,电信公司可以更好预测出流失的客户,沃尔玛则更加精准的预测哪个产品会大卖,汽车保险行业会了解客户的需求和驾驶水平,政府也能了解到选民的偏好。
2.业务流程优化
大数据也更多的帮助业务流程的优化。可以通过利用社交媒体数据、网络搜索以及天气预告挖掘出有价值的数据,其中大数据的应用最广泛的就是供应链以及配送路线的优化。在这2个方面,地理定位和无线电频率的识别追踪货物和送货车,利用实时交通路线数据制订更加优化的路线。人力资源业务也通过大数据的剖析来进行改良,这其中就包括了人才招聘的优化。
3.大数据正在改善我们的生活
大数据不但单只是应用于企业和政府,同样也适用我们生活当中的每个人。我们可以利用穿着的装备(如智能手表或者智能手环)生成最新的数据,这让我们可以凭据我们热量的消耗以及睡眠模式来进行追踪。而且还利用利用大数据剖析来寻找属于我们的爱情,大多数时间交友网站就是大数据应用工具来帮助需要的人匹配合适的对象。
4.提高医疗和研发
大数据剖析应用的计算能力可以让我们能够在几分钟内就可以解码整个DNA。而且让我们可以制订出最新的治疗方案。同时可以更好的去理解和预测疾病。就好像人们戴上智能手表等可以形成的数据一样,大数据同样可以帮助病人对于病情进行更好的治疗。大数据技术现在已经在医院应用监视早产婴儿和患病婴儿的情况,通过记录和剖析婴儿的心跳,医生针对婴儿的身体可能会出现不适症状做出预测。这样可以帮助医生更好的救助婴儿。查看原文
大数据应用的五个典型应用场景
“数据将成为一种战略性原料,每一个企业、科研团队和政府,都有责任有目的地搜集、处理、分析、索引数据。”电子科技大学互联网中心主任周涛号召企业投身大数据,对大数据怦然心动的企业也确实很多。但基于对全球95个国家、26个行业的1144名业务人员和IT专业人士的广泛调研,IBM发现,大多数企业都已经认识到‘大数据’改善决策流程和业务成效的潜能,但他们却不知道该如何入手。
的确,在主动或被动迎接大数据时代之时,企业管理人员迫切需要在实干之前,明确很多问题的答案:3V之外大数据还具备何种属性?什么是大数据解决之道的要素?大数据实施是否有章可循?……
以《分析:大数据在现实世界中的应用》白皮书为引子,IBM的大数据战略努力令企业的诸多疑惑迎刃而解。在此基础上,以“智慧的分析洞察”为核心的IBM大数据价值体系中的五大典型业务需求和对应的落地实践,形象化地展现了大数据如何驱动企业商业价值的增长。
IBM全球副总裁兼大中华区软件集团总经理胡世忠
明确发力点
在大数据和分析领域,IBM公认已经具备了充分的技术优势。IBM全球副总裁兼大中华区软件集团总经理胡世忠表示:“数据构成了智慧地球的三大元素:物联化(instrumented)、互连化(interconnected)和智能化(intelligent),而这三大元素又改变了数据来源、传送方式和利用方式,带来‘大数据’这场信息社会的变革。作为大数据领域的领导者,IBM正在利用领先方法论和全面大数据技术帮助企业重新思考已有的 IT模式;助力企业进行基于这场信息革命的业务转型,获取竞争机遇和不可估量的商业价值。”
要实现这一愿景,有必要知晓企业对应用大数据的认知程度和接受程度。IBM商业价值研究院和牛津大学赛德商学院联手实施了一项调研,并共同撰写发布了《分析:大数据在现实世界中的应用》白皮书。
在该白皮书中,现阶段企业对大数据的观点得到全方位体现,它们着手实践大数据的方式被完整揭示,而它们在利用大数据获取商业价值增长方面的进展也被一一披露。
基于翔实的广泛调研,IBM得出了数个颇具参考价值的结论:未明确大数据的定义是企业混淆大数据的最主要原因;企业对大数据的采用还处于初级阶段(大多数企业目前主要是理解概念(24%)或者定义与大数据相关的路线图(47%));以客户为中心是大数据的首要任务成为共识;内部数据是企业内大数据的主要来源但大量未开发的价值隐含在内部系统中;不确定性以及技能的缺失使得社交媒体等外部数据源未得到充分利用;缺乏先进的分析技能是从大数据中获得最大价值的主要障碍。
德华安顾人寿董办主任王洪涛现身说法。长期耕耘于保险行业的他表示,大数据在保险行业的潜力巨大:保险行业使用大数据,现在还大多停留在“集约使用”阶段;保险公司拥有丰富的客户数据、交易数据和接触数据,但数据量的积累,往往导致“数据坟墓”"现象的发生;保险行业没有广泛培养出大数据智慧应用的意识和能力。他认为,保险行业利用大数据,一要集约地用,二要智慧地用。后者指的是利用数据挖掘,发现保险行业内的新知识,在这方面,保险行业仍然处于开拓期。
为了进一步明确大数据定义,IBM首先完善了大数据的新属性:Veracity(真实性)。IBM全球企业咨询服务部业务分析与优化服务大中华区总经理段仰圣表示:“真实性是当前企业亟需考虑的重要维度,将促使他们利用数据融合和先进的数学方法进一步提升数据的质量,从而创造更高价值。”
针对企业使用大数据的现状,IBM给出了五项关键建议,以期鼓励企业入手大数据:以客户为中心推动初始举措;制订整个企业的大数据蓝图;从现有数据开始,实现近期目标;根据业务优先级逐步建立分析能力;基于可衡量的指标制定业务投资回报分析
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29