京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用案例:改善人们生活
大数据现在正在逐渐地升温,因为它确实能给人们的生产生活带来便利,现在数据观就带大家看看大数据应用在哪些方面。
大数据应用的八个典型案例
什么是大数据?不要再举例说啤酒和尿布的例子了,Gartner的分析师Doug Laney在讲解大数据案例时提到过8个更有新意更典型的案例,可帮助更清晰的理解大数据时代的到来。
1. 梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2. Tipp24 AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3. 沃尔玛的搜索。这家零售业寡头为其网站Walmart.com自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4. 快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。查看原文
大数据应用的九个领域
大数据应用在生活中可以帮助我们获取到有用的价值。
随着大数据的应用越来越广泛,应用的行业也越来越低,我们每日都可以看到大数据的一些新颖的应用,从而帮助人们从中获取到真正有用的价值。许多组织或者个人都会受到大数据的剖析影响,但是大数据是怎样帮助人们挖掘出有价值的信息呢?下面就让我们一起来看看九个价值极度高的大数据的应用,这些都是大数据在剖析应用上的关键领域:
1.理解客户、满足客户服务需求
大数据的应用现在在这领域是最广为人知的。重点是怎样应用大数据更好的了解客户以及他们的喜好和行为。企业极度喜欢搜集社交方面的数据、浏览器的日志、剖析出文本和传感器的数据,为了更加全面的了解客户。在通常情况下,创建出数据模型进行预测。好比美国的著名零售商Target就是通过大数据的剖析,获得有价值的信息,精准得预测到客户在什么时间想要小孩。另外,通过大数据的应用,电信公司可以更好预测出流失的客户,沃尔玛则更加精准的预测哪个产品会大卖,汽车保险行业会了解客户的需求和驾驶水平,政府也能了解到选民的偏好。
2.业务流程优化
大数据也更多的帮助业务流程的优化。可以通过利用社交媒体数据、网络搜索以及天气预告挖掘出有价值的数据,其中大数据的应用最广泛的就是供应链以及配送路线的优化。在这2个方面,地理定位和无线电频率的识别追踪货物和送货车,利用实时交通路线数据制订更加优化的路线。人力资源业务也通过大数据的剖析来进行改良,这其中就包括了人才招聘的优化。
3.大数据正在改善我们的生活
大数据不但单只是应用于企业和政府,同样也适用我们生活当中的每个人。我们可以利用穿着的装备(如智能手表或者智能手环)生成最新的数据,这让我们可以凭据我们热量的消耗以及睡眠模式来进行追踪。而且还利用利用大数据剖析来寻找属于我们的爱情,大多数时间交友网站就是大数据应用工具来帮助需要的人匹配合适的对象。
4.提高医疗和研发
大数据剖析应用的计算能力可以让我们能够在几分钟内就可以解码整个DNA。而且让我们可以制订出最新的治疗方案。同时可以更好的去理解和预测疾病。就好像人们戴上智能手表等可以形成的数据一样,大数据同样可以帮助病人对于病情进行更好的治疗。大数据技术现在已经在医院应用监视早产婴儿和患病婴儿的情况,通过记录和剖析婴儿的心跳,医生针对婴儿的身体可能会出现不适症状做出预测。这样可以帮助医生更好的救助婴儿。查看原文
大数据应用的五个典型应用场景
“数据将成为一种战略性原料,每一个企业、科研团队和政府,都有责任有目的地搜集、处理、分析、索引数据。”电子科技大学互联网中心主任周涛号召企业投身大数据,对大数据怦然心动的企业也确实很多。但基于对全球95个国家、26个行业的1144名业务人员和IT专业人士的广泛调研,IBM发现,大多数企业都已经认识到‘大数据’改善决策流程和业务成效的潜能,但他们却不知道该如何入手。
的确,在主动或被动迎接大数据时代之时,企业管理人员迫切需要在实干之前,明确很多问题的答案:3V之外大数据还具备何种属性?什么是大数据解决之道的要素?大数据实施是否有章可循?……
以《分析:大数据在现实世界中的应用》白皮书为引子,IBM的大数据战略努力令企业的诸多疑惑迎刃而解。在此基础上,以“智慧的分析洞察”为核心的IBM大数据价值体系中的五大典型业务需求和对应的落地实践,形象化地展现了大数据如何驱动企业商业价值的增长。
IBM全球副总裁兼大中华区软件集团总经理胡世忠
明确发力点
在大数据和分析领域,IBM公认已经具备了充分的技术优势。IBM全球副总裁兼大中华区软件集团总经理胡世忠表示:“数据构成了智慧地球的三大元素:物联化(instrumented)、互连化(interconnected)和智能化(intelligent),而这三大元素又改变了数据来源、传送方式和利用方式,带来‘大数据’这场信息社会的变革。作为大数据领域的领导者,IBM正在利用领先方法论和全面大数据技术帮助企业重新思考已有的 IT模式;助力企业进行基于这场信息革命的业务转型,获取竞争机遇和不可估量的商业价值。”
要实现这一愿景,有必要知晓企业对应用大数据的认知程度和接受程度。IBM商业价值研究院和牛津大学赛德商学院联手实施了一项调研,并共同撰写发布了《分析:大数据在现实世界中的应用》白皮书。
在该白皮书中,现阶段企业对大数据的观点得到全方位体现,它们着手实践大数据的方式被完整揭示,而它们在利用大数据获取商业价值增长方面的进展也被一一披露。
基于翔实的广泛调研,IBM得出了数个颇具参考价值的结论:未明确大数据的定义是企业混淆大数据的最主要原因;企业对大数据的采用还处于初级阶段(大多数企业目前主要是理解概念(24%)或者定义与大数据相关的路线图(47%));以客户为中心是大数据的首要任务成为共识;内部数据是企业内大数据的主要来源但大量未开发的价值隐含在内部系统中;不确定性以及技能的缺失使得社交媒体等外部数据源未得到充分利用;缺乏先进的分析技能是从大数据中获得最大价值的主要障碍。
德华安顾人寿董办主任王洪涛现身说法。长期耕耘于保险行业的他表示,大数据在保险行业的潜力巨大:保险行业使用大数据,现在还大多停留在“集约使用”阶段;保险公司拥有丰富的客户数据、交易数据和接触数据,但数据量的积累,往往导致“数据坟墓”"现象的发生;保险行业没有广泛培养出大数据智慧应用的意识和能力。他认为,保险行业利用大数据,一要集约地用,二要智慧地用。后者指的是利用数据挖掘,发现保险行业内的新知识,在这方面,保险行业仍然处于开拓期。
为了进一步明确大数据定义,IBM首先完善了大数据的新属性:Veracity(真实性)。IBM全球企业咨询服务部业务分析与优化服务大中华区总经理段仰圣表示:“真实性是当前企业亟需考虑的重要维度,将促使他们利用数据融合和先进的数学方法进一步提升数据的质量,从而创造更高价值。”
针对企业使用大数据的现状,IBM给出了五项关键建议,以期鼓励企业入手大数据:以客户为中心推动初始举措;制订整个企业的大数据蓝图;从现有数据开始,实现近期目标;根据业务优先级逐步建立分析能力;基于可衡量的指标制定业务投资回报分析
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16