
大数据为电信运营商转型提供强劲动力
互联网特别是移动互联网的迅猛发展使电信运营商网络流量激增的同时收入增长变得愈加困难。建立起大数据驱动体系将帮助运营商开创一片新天地。报告指出,应用大数据系统后,全球移动运营商的客户流失将大大减少,到2018年因减少客户流失所带来的收益将超过40亿美元。该报告称,大数据平台的启用让运营商能够预测客户流失的可能性,并采取预防措施,从而减少收入损失。一些领先的网络运营商已经发现,在应用大数据技术后,客户流失显着减少。
伴随着云计算和大数据的发展热潮,数据作为一种无形资产的价值正在日益得到认可。在大数据时代,电信运营商需要重视并建立大数据体系,掌握大数据技能,发掘大数据价值,从而为自身的转型发展提供强劲动力。
要建立大数据管理体系
电信运营商有着大量的用户数据、业务数据、服务数据和网络数据,经过长期运营,这些数据逐渐积累起来。但是,没有管理的数据就像埋藏在地下的矿产,价值无法体现。运营商当前由于没有全局性大数据管理体系,现存数据信息呈现出碎片、割裂和孤岛状的特点,难以深入应用。
对于大数据的应用已经成为一种必然趋势,其发展势头非常强劲。研究机构Gartner预测,2020年全球超过75%的企业都将在日常的经营和决策过程中引入大数据分析系统,利用大数据的能力逐渐成为企业实现可持续发展的基本素质。
电信运营商掌握着丰富的数据资源,在利用大数据方面具有天然优势。Sysbase发布的分析报告称,电信行业在运营中引入大数据系统后,人均产值将提升17%以上,大数据对于行业发展的贡献排在了所有因素的首位。不过,电信运营商要想充分利用数据资源来创造价值,就必须对现有的IT系统和平台进行升级改造。
实现大数据管理,需要进行运营商IT系统的变革。例如,在网管系统方面,需要打破传统以专业划分的独立网管建设体系,建立能够支撑端到端业务、实现全视景管理的综合平台,便于数据关联;在业务支撑系统方面,由偏重于后台计费账务,转变为关注前台客户服务,同时需要适度集中化,提高数据集规模。实现数据管理还需要增强数据的深度解析与收集能力,以提高对用户、业务和网络的感知能力,加强数据的多样性。
实现大数据管理,需要具备全生命周期的数据平台,打通、整合运营商各类数据,作为管理落地的载体和驱动大数据应用的工具。考虑到数据规模,电信运营商需要在平衡好完整性、一致性和性能要求的基础上,做好平台的集中与分布相结合的全国布局;还应针对热点数据、在线数据、近线数据选择不同方式的存储并根据数据特点进行动态调整,在实现数据快速访问的同时,降低存储成本、优化使用效率。
要建立大数据驱动体系
在建立大数据管理体系和大数据平台的基础之上,要充分发挥大数据的驱动作用,驱动电信运营商经营内涵的升级,驱动管理效率提高,实现更精准的营销,实现商业模式的探索和改良。运营商历来重视业务驱动和技术驱动,大数据驱动可以使运营商多一些互联网思维,用来重构业务、建设、运营模式,使得大数据成为运营商的核心竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01