
大数据信息隐私杀伤力有多大
随着大数据被挖掘,我们在使用着大数据,享受着它带给我们的美好体验和便利生活。在此过程中,大数据技术越来越发达,人们可以用更加先进的方法使用大数据。同时,大数据相关分析工具的发展也稳步进行。国内大数据厂商也层出不穷。大数据魔镜就是一款强大而免费的大数据分析工具。有了这样的基础,人们对大数据的利用再慢慢加深。不过随之而来的,是数据信息对我们隐私的“探掘“。
我们在不断的隐私被侵犯中,慢慢学着“习惯”。在这过程中,有政府情报机构基于政治目的,对我们进行的监督和控制;有互联网企业基于商业目的,对我们进入的数据搜集与处理……包括苹果公司所说的,我们通过数据向用户投放定向广告,这是个优点,因为可以提供给用户与其收入情况相匹配的广告。对此,我们只能说“谢谢了”。
因为,你可以通过数据信息知道我的收入状况,也就意味着你可以知道更多状况;你可以把收入状况“分享”给广告客户,也就意味着你可以“分享”更多的内容给有需要的客户,最后只是你们之间商讨价码的问题。但是,就是这些你们认为可以赚钱而并没有那么严重的东西,或许就有可能给别人带来灾难性的伤害。
这让人想到了曾经的莫妮卡•莱温斯基,也许这个案例并不是最恰当的,但就是这么个普普通通的前白宫实习生,当她与美国总统克林顿的爱情丑闻被互联网公之于众时,瞬间变成了全世界公开羞辱的对象,被贴上了“淫妇”、,“荡妇”,“婊子”,“贱人”等标签。
庆幸,莱温斯基活下来了,但并不是每个人都那么幸运。在今年年初的TED大会上,莱温斯基在与大家分享《耻辱的代价》时,讲到了这样一个案例: 2010年9月,泰勒•克莱门蒂,美国罗格斯大学的大一新生。可爱、敏感、富有创意的克莱门蒂被室友偷拍到和另一个男人有亲密关系。当这个同性恋的视频在网络世界曝光后,嘲笑和网络欺凌的火种被迅速点燃。几天后,泰勒从乔治华盛顿大桥上纵身跳下。一个年仅18岁的生命就这样逝去。一个悲剧而无谓的死亡。或许有人会觉得克莱门蒂心理素质不过关,敢做还怕别人说嘛?这就好比说,比尔盖茨有亿万家产,他就不能介意自己的银行卡号和密码被泄密?理由只是“有钱还怕别人惦记”嘛?其实别说有钱,就是没钱也不乐意别人“惦记”我的卡号密码。因为那里面可能就是生命的全部财富支撑。如果信息被泄露了,如果卡上的数字瞬间“清零”了, 后果可想而知。
随着数字信息技术的不断发展,“网络匿名”有可能会变成“数学上不可能”的事。
1995年,欧盟出台的隐私法例将“个人资料”定义为可以直接或间接识别一个人的信息。很显然,当时立法者考虑的是那些带有身份标识号的文件资料之类的东西,这些标识号就好像人的姓名,而立法者们希望它们可以得到保护。
如今,“个人资料”这一定义所包含的内容已经远远超出当年那些立法官员的想象,甚至可以轻易地超过18年前他们通过这项法例时整个世界的数据量。
来看看到底发生了什么。首先,这个世界每年所创造的数据量在以指数形式增长,去年,这一数字则达到了2.8ZB(1ZB =10244GB),听起来就很可怕的数字,而且据知名信息行业咨询服务商IDC称,这一数字将在2015年翻一番。此外,这些数据中的3/4是由个体人在创造或移动数字文件时贡献的。举例来说,一个标准的美国上班族每年可以贡献180万MB的数据量,平均每天则有约5000MB,这其中包括下载的电影、文档、电邮以及这些数据通过移动或非移动互联网传播时所产生的附加数据量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07