
家庭互联网大数据百亿市场渐现
智能家居前景美妙,现实却很骨感。今年智能家电新品发布的频率,明显放缓。2020年将达万亿的智能家居市场“大饼”,也没能挽救多家上市公司当下的业绩于水火。由于缺乏统一标准,企业各自为政,难以形成整体生态,所以智能家居发展道路曲折。
不过,智能电视有望成为率先突破的细分领域。11月20日,智能家居大数据上市公司奥维云网(831101.SZ)公告,斥资600万元收购“勾正数据”公司20%的股权,希望未来三年内建设中国最具规模的智能电视用户大数据平台,这就是一个积极的信号。
为什么是智能电视?
它的智能化程度,在众多家电产品中最高。国内智能电视的渗透率今年已经达到70%~80%,而且它的优势在于大屏,成为家庭互联网的最大入口。中国有3.5亿个家庭,未来互联网电视的成长空间巨大。所以,这一两年“千军万马”都想跨界做互联网电视。
有人认为,2016年将是互联网电视大屏价值引爆的一年。奥维云网的董事长喻亮星也很认同:“明年会比今年走得快”。因为每年1000多亿元的电视广告,已是现成的市场,未来部分电视广告将转化成互联网电视广告。
事实上,今年海信、创维、TCL、乐视等,都号称分别有5000万元~7000万元左右的开机广告收入。即使这样,它们几个加起来就是几个亿,相比于电视广告一年千亿元的广告规模还是小,互联网电视的广告价值离真正的点爆还远。
挖掘电视大屏价值,还有两大现实的困难。
首先是缺乏数据支撑。喻亮星坦言,奥维就是想尽快把底层数据做出来,为互联网电视广告的精准投入做准确,因为客户并不愿意“闭着眼睛”投广告。
另一个难题是硬件的增值功能需完善。实现增值,要与软件、硬件环境相结合,这对电视的芯片、图像处理能力都有要求。据喻亮星介绍,2013年年底的智能电视产品才开始具有这样的增值能力,目前国内保有量才2000万~3000万台,且激活率只有一半,还分散在不同品牌里,所以目前广告价值暂时还不大。
不过,未来三年将快速增长,国内智能电视保有量将从2015年的8000万台到2018年突破2亿台。而大数据的能力,将是开采电视大屏价值的“锁匙”。
为此,奥维做了两件事情。一是装了奥维软件平台的电视用户,现在有100万台,喻亮星透露,通过与勾正的资源整合,到明年春节前会达到500万台。其次,奥维对接各大品牌的、可以投放广告的智能电视活跃终端已达2000多万台,覆盖TCL、创维、长虹、康佳、夏普、联想等品牌,“一旦我们达到3000万~5000万台,价值就会变大。”
彩电厂为什么愿意让奥维来做呢?喻亮星说,“一是我们的数据采集能力强;二是数据分析能力强;三是奥维天然是第三方,采用收入分成模式,不干扰彩电品牌自身的运营。”
大数据,近年已成为热词,但如何产生真正的价值,还需要实实在在的努力。
奥维此次参股勾正公司,揭开了其大数据布局的“冰山一角”。过去两年,奥维的大数据团队已增至40多人,并在大数据领域重金投入,去年投了500多万元,今年又投了1000多万元。
其储备的大数据能力主要在五个方面:一是数据采集的能力,原来奥维跟全国大连锁合作,成本高、时间慢,现在通过爬虫技术,可覆盖门户网站、电商平台、社交平台等信息;二是云计算能力,原来处理20万条文本信息要2小时,现在只需20秒;三是应用场景的挖掘能力,凭借奥维对家电制造业、流通业和用户多年的研究经验,迅速找到大数据的应用场景;四是建立模型和数据挖掘的能力;五是可视化的能力。
“一定要把大数据落实到小的应用场景。”这是奥维云网的助理总裁韩昱的体会。
像今年“双11”商战,已引入数据战。通过每五分钟监测一次价格变动,奥维可以提醒厂家锁定竞争对手的哪个型号,并建议用哪个产品型号去应对。“以前,奥维只是卖报告,企业看一下市场占有率就完了。现在,通过大数据,我们可以帮助企业,进行实时的决策。”
又如,以前产品创意,做4000个样本,要两个月,花80万~100万;现在利用大数据技术,每月收集10万条信息,2天采集、3天分析、5天出报告,成本只是原来的十分之一。
未来,PC端的视频、广告、游戏、电商、在线教育、精准营销等业务模式,都会延伸到互联网电视端,潜在的价值空间巨大。不只奥维,BAT、彩电巨头、互联网彩电新军、苏宁国美等,谁都想冲着这块“肥肉”来咬一口。
奥维希望搭建一个基于产品和用户的、开放式的大数据平台,并预言“家庭互联网用户大数据将是一个百亿元的蓝海市场”。同样可以预见的是,竞争也会异常激烈。喻亮星明确,尽管与厂商有竞合关系,奥维定位做中间环节,更多是通过数据帮助企业,服务好用户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01