京公网安备 11010802034615号
经营许可证编号:京B2-20210330
家庭互联网大数据百亿市场渐现
智能家居前景美妙,现实却很骨感。今年智能家电新品发布的频率,明显放缓。2020年将达万亿的智能家居市场“大饼”,也没能挽救多家上市公司当下的业绩于水火。由于缺乏统一标准,企业各自为政,难以形成整体生态,所以智能家居发展道路曲折。
不过,智能电视有望成为率先突破的细分领域。11月20日,智能家居大数据上市公司奥维云网(831101.SZ)公告,斥资600万元收购“勾正数据”公司20%的股权,希望未来三年内建设中国最具规模的智能电视用户大数据平台,这就是一个积极的信号。
为什么是智能电视?
它的智能化程度,在众多家电产品中最高。国内智能电视的渗透率今年已经达到70%~80%,而且它的优势在于大屏,成为家庭互联网的最大入口。中国有3.5亿个家庭,未来互联网电视的成长空间巨大。所以,这一两年“千军万马”都想跨界做互联网电视。
有人认为,2016年将是互联网电视大屏价值引爆的一年。奥维云网的董事长喻亮星也很认同:“明年会比今年走得快”。因为每年1000多亿元的电视广告,已是现成的市场,未来部分电视广告将转化成互联网电视广告。
事实上,今年海信、创维、TCL、乐视等,都号称分别有5000万元~7000万元左右的开机广告收入。即使这样,它们几个加起来就是几个亿,相比于电视广告一年千亿元的广告规模还是小,互联网电视的广告价值离真正的点爆还远。
挖掘电视大屏价值,还有两大现实的困难。
首先是缺乏数据支撑。喻亮星坦言,奥维就是想尽快把底层数据做出来,为互联网电视广告的精准投入做准确,因为客户并不愿意“闭着眼睛”投广告。
另一个难题是硬件的增值功能需完善。实现增值,要与软件、硬件环境相结合,这对电视的芯片、图像处理能力都有要求。据喻亮星介绍,2013年年底的智能电视产品才开始具有这样的增值能力,目前国内保有量才2000万~3000万台,且激活率只有一半,还分散在不同品牌里,所以目前广告价值暂时还不大。
不过,未来三年将快速增长,国内智能电视保有量将从2015年的8000万台到2018年突破2亿台。而大数据的能力,将是开采电视大屏价值的“锁匙”。
为此,奥维做了两件事情。一是装了奥维软件平台的电视用户,现在有100万台,喻亮星透露,通过与勾正的资源整合,到明年春节前会达到500万台。其次,奥维对接各大品牌的、可以投放广告的智能电视活跃终端已达2000多万台,覆盖TCL、创维、长虹、康佳、夏普、联想等品牌,“一旦我们达到3000万~5000万台,价值就会变大。”
彩电厂为什么愿意让奥维来做呢?喻亮星说,“一是我们的数据采集能力强;二是数据分析能力强;三是奥维天然是第三方,采用收入分成模式,不干扰彩电品牌自身的运营。”
大数据,近年已成为热词,但如何产生真正的价值,还需要实实在在的努力。
奥维此次参股勾正公司,揭开了其大数据布局的“冰山一角”。过去两年,奥维的大数据团队已增至40多人,并在大数据领域重金投入,去年投了500多万元,今年又投了1000多万元。
其储备的大数据能力主要在五个方面:一是数据采集的能力,原来奥维跟全国大连锁合作,成本高、时间慢,现在通过爬虫技术,可覆盖门户网站、电商平台、社交平台等信息;二是云计算能力,原来处理20万条文本信息要2小时,现在只需20秒;三是应用场景的挖掘能力,凭借奥维对家电制造业、流通业和用户多年的研究经验,迅速找到大数据的应用场景;四是建立模型和数据挖掘的能力;五是可视化的能力。
“一定要把大数据落实到小的应用场景。”这是奥维云网的助理总裁韩昱的体会。
像今年“双11”商战,已引入数据战。通过每五分钟监测一次价格变动,奥维可以提醒厂家锁定竞争对手的哪个型号,并建议用哪个产品型号去应对。“以前,奥维只是卖报告,企业看一下市场占有率就完了。现在,通过大数据,我们可以帮助企业,进行实时的决策。”
又如,以前产品创意,做4000个样本,要两个月,花80万~100万;现在利用大数据技术,每月收集10万条信息,2天采集、3天分析、5天出报告,成本只是原来的十分之一。
未来,PC端的视频、广告、游戏、电商、在线教育、精准营销等业务模式,都会延伸到互联网电视端,潜在的价值空间巨大。不只奥维,BAT、彩电巨头、互联网彩电新军、苏宁国美等,谁都想冲着这块“肥肉”来咬一口。
奥维希望搭建一个基于产品和用户的、开放式的大数据平台,并预言“家庭互联网用户大数据将是一个百亿元的蓝海市场”。同样可以预见的是,竞争也会异常激烈。喻亮星明确,尽管与厂商有竞合关系,奥维定位做中间环节,更多是通过数据帮助企业,服务好用户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16