京公网安备 11010802034615号
经营许可证编号:京B2-20210330
云计算与物联网技术的大数据在图书馆中的应用
“大家知道,数据是有价值的,但是数据作为一个要素,需要在市场上合法的流通,不然的话数据流动将形成一个无序的状态。正是基于这样的认识,贵州才成立了一家大数据 交易所。特别是对大数据交易所的相关的规则进行了探索,利用市场这只无情的手来配置数据的合理流动。”11月16日,贵州市委书记陈刚在由国家发改委、工信部、中央网信办和深圳市政府主办的2015年大数据创新发展论坛上介绍的全国首家大型数据交易所的情况引起了现场观众的关注。
为加快推动实施《促进大数据发展行动纲要》,国家发改委在组织实施大数据综合试验区建设,贵州正是其中一个试点区域。国家发改委副主任林念修表示,中国拥有世界第一的大数据用户数,市场优势显著,发展潜力巨大,发展大数据势在必行,所以中国要把握新挑战,把握新机遇。同时,大数据产业自身也正在迎来快速发展的大好机遇,研究机构预测,未来5年,全球大数据市场将保持31.7%的年复合增长率,中国的大数据市场年复合增长率将高达51.4%,大数据产业正在成为新的经济增长点。
公开资料显示,贵阳大数据交易所以电子交易为主要形式,摒弃大数据产业交易底层数据的原始概念,由交易所作为第三方机构对数据进行清洗与建模分析,同时为买*卖双方提供一个数据结果交易的场所。数据将进行自动计价连续交易,交易所将针对每一个数据品种设计自动的计价公式,数据买方可以通过交易系统查询每一类数据的实时价格。目前大数据交易所对数据买方进行了一些限制,数据买方合法性在2015年,暂时不允许任何个人购买交易所的数据。同时在监管不健全的情况下,外资数据买方购买数据之前需要进行资格审查。
论坛上,中国工程院副院长邬贺铨院士对数据交易表达了他的看法和担忧。目前,我国北京、上海、广州、深圳、贵阳、陕西等成立了一批数据交易所,正在筹建的还有徐州、江苏、重庆、沈阳、哈尔滨、青岛等。数据交易所的模式一般有两种,一种是产权,把数据所有权卖出去,但是卖的是不是自己的所有权这是一个问题;第二是使用权,使用权的交易涉及到所有权是谁的、是不是所有者授权等问题。有些交易所把政府的公共数据也去卖,邬院士认为政府的公共数据是有价值而没有价格的,只有公开或者不公开。另外,谁有权批准成立交易所,数据交易所的交易规则、标准、方法、审计缺少规范等问题都需要在目前大数据热的情况下由政府引导。大数据产业发展的前提是开放数据,开放数据需要有数据的整合能力、脱敏和安全技术。
关于目前大数据交易的合法合规、安全以及交易形式等问题,论坛嘉宾奇虎360总裁齐向东和阿里巴巴副总裁涂子沛也表达了他们的观点。齐向东认为,原则上讲,大数据交易在一个交易市场上公开的方式进行,有一定的规则,应该是安全的。比如通信的数据和银行的数据都涉及到每个人的隐私,如果把这些数据加工生产成为一种个人的信用等级的产品,再进行交易。购买的就不是个人隐私,而是一种产品。那么这种交易就是可以进行的。
涂子沛认可了他的观点,并补充说道:“数据交易的难点之一是数据的定价难以确认。第二,我认为如果数据交易仅仅是把数据的所有权卖掉,是一种很LOW的做法。因为数据不是像黄金一样的有形物质,物质用完会消耗,但数据不会被消耗。它的价值在不同的时间、地点、场景是不同的。”涂先生表示数据应该是智能社会的土壤。如果数据单单这样有形的去买*卖,就存在数据的价值取决于购买时间点的问题,但是现在数据都是以数据流的形式存在的,买家需要的可能是一个不断更新的数据。“我觉得,未来的数据交易应该是一个服务的形式,买的是数据服务,而不占有数据,但是可以享受数据所带来的查询、比对等种种服务。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08