
云计算与物联网技术的大数据在图书馆中的应用
“大家知道,数据是有价值的,但是数据作为一个要素,需要在市场上合法的流通,不然的话数据流动将形成一个无序的状态。正是基于这样的认识,贵州才成立了一家大数据 交易所。特别是对大数据交易所的相关的规则进行了探索,利用市场这只无情的手来配置数据的合理流动。”11月16日,贵州市委书记陈刚在由国家发改委、工信部、中央网信办和深圳市政府主办的2015年大数据创新发展论坛上介绍的全国首家大型数据交易所的情况引起了现场观众的关注。
为加快推动实施《促进大数据发展行动纲要》,国家发改委在组织实施大数据综合试验区建设,贵州正是其中一个试点区域。国家发改委副主任林念修表示,中国拥有世界第一的大数据用户数,市场优势显著,发展潜力巨大,发展大数据势在必行,所以中国要把握新挑战,把握新机遇。同时,大数据产业自身也正在迎来快速发展的大好机遇,研究机构预测,未来5年,全球大数据市场将保持31.7%的年复合增长率,中国的大数据市场年复合增长率将高达51.4%,大数据产业正在成为新的经济增长点。
公开资料显示,贵阳大数据交易所以电子交易为主要形式,摒弃大数据产业交易底层数据的原始概念,由交易所作为第三方机构对数据进行清洗与建模分析,同时为买*卖双方提供一个数据结果交易的场所。数据将进行自动计价连续交易,交易所将针对每一个数据品种设计自动的计价公式,数据买方可以通过交易系统查询每一类数据的实时价格。目前大数据交易所对数据买方进行了一些限制,数据买方合法性在2015年,暂时不允许任何个人购买交易所的数据。同时在监管不健全的情况下,外资数据买方购买数据之前需要进行资格审查。
论坛上,中国工程院副院长邬贺铨院士对数据交易表达了他的看法和担忧。目前,我国北京、上海、广州、深圳、贵阳、陕西等成立了一批数据交易所,正在筹建的还有徐州、江苏、重庆、沈阳、哈尔滨、青岛等。数据交易所的模式一般有两种,一种是产权,把数据所有权卖出去,但是卖的是不是自己的所有权这是一个问题;第二是使用权,使用权的交易涉及到所有权是谁的、是不是所有者授权等问题。有些交易所把政府的公共数据也去卖,邬院士认为政府的公共数据是有价值而没有价格的,只有公开或者不公开。另外,谁有权批准成立交易所,数据交易所的交易规则、标准、方法、审计缺少规范等问题都需要在目前大数据热的情况下由政府引导。大数据产业发展的前提是开放数据,开放数据需要有数据的整合能力、脱敏和安全技术。
关于目前大数据交易的合法合规、安全以及交易形式等问题,论坛嘉宾奇虎360总裁齐向东和阿里巴巴副总裁涂子沛也表达了他们的观点。齐向东认为,原则上讲,大数据交易在一个交易市场上公开的方式进行,有一定的规则,应该是安全的。比如通信的数据和银行的数据都涉及到每个人的隐私,如果把这些数据加工生产成为一种个人的信用等级的产品,再进行交易。购买的就不是个人隐私,而是一种产品。那么这种交易就是可以进行的。
涂子沛认可了他的观点,并补充说道:“数据交易的难点之一是数据的定价难以确认。第二,我认为如果数据交易仅仅是把数据的所有权卖掉,是一种很LOW的做法。因为数据不是像黄金一样的有形物质,物质用完会消耗,但数据不会被消耗。它的价值在不同的时间、地点、场景是不同的。”涂先生表示数据应该是智能社会的土壤。如果数据单单这样有形的去买*卖,就存在数据的价值取决于购买时间点的问题,但是现在数据都是以数据流的形式存在的,买家需要的可能是一个不断更新的数据。“我觉得,未来的数据交易应该是一个服务的形式,买的是数据服务,而不占有数据,但是可以享受数据所带来的查询、比对等种种服务。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09