京公网安备 11010802034615号
经营许可证编号:京B2-20210330
信用卡客户价值分析
让历史告诉未来。客户价值分析就是通过数学模型由客户历史数据预测客户未来购买力,这是数据挖掘与数据分析中一个重要的研究和应用方向。RMF方法就是让历史告诉未来的趋势分析法,利用RMF方法科学地预测老客户未来的购买金额,然后对产品成本、关系营销费用等进行推算,即可按年、按季度、按月预测出客户未来价值。这里以信用卡为例,讨论和分析信用卡客户价值。
对银行而言,预测客户未来价值能够使银行将传统的整体大众营销推进到分层差异化营销、一对一差异化营销的高度,对不同的分层客户采取不同的营销模式、产品策略和服务价格,从而推动和促进客户购买交易。
根据RFM方法,“客户价值”预测模型为:
客户未来价值 = 银行未来收益 – 未来产品成本 – 未来关系营销费用
对于信用卡客户,我们定义此处的“未来”是指未来一年(也可以是未来一季度)。“银行收益”包括信用卡年费、商户佣金、逾期利息,以及其他手续费等;“产品成本”即产品研发、维护和服务成本,包括发卡、制卡、换卡和邮寄等费用,以及其他服务费用;“关系营销费用”即关系维护和营销成本,包括商户活动、积分礼品兑换、营销宣传等。
RFM方法是目前国际上最成熟、最通用、最被接受的客户价值分析的主流预测方法。实际上,RFM方法是一整套客户价值分析方法中的一部分(其中,R:最近购买日Recency,F:购买频率Frequency,M:平均单次购买金额Monetary),但是RFM方法最具有代表性,其它还包括客户购买行为随机过程模型、马可夫链状态移转矩阵方法、贝氏机率推导状态移转概率方法和拟合回归分析方法等。
由于“银行收益”包括信用卡年费、商户佣金、逾期利息,以及其他手续费等,这里统一称为“购买金额”。因此,“客户未来购买金额”预测模型为:
客户未来购买金额 = 未来购买频率 * 未来平均金额 * 未来购买频率概率 * 未来平均金额概率
其中,未来购买频率、未来平均金额、未来购买频率概率、未来平均金额概率均可通过客户购买行为的随机过程模型来描述和求解。对于信用卡客户,“客户购买行为”包括刷卡、透支、取现、支付、分期等,以及客户消费习惯、还款习惯、收入贡献、信用额度、用卡来往区间、逾期时长、进件通路、客户服务和副卡的客户购买行为等。
根据RFM方法预测过程,随机过程模型除了推导和计算客户未来购买频率概率、未来平均金额概率的密度分配之外,还隐藏着客户未来购买频率、未来平均金额的状态移转期望值和概率。因此,除了使用随机过程模型之外,还需使用贝氏机率方法推导状态移转期望值和概率。
此外,要科学地分析和预测客户未来价值,有必要用长度和宽度的二维样本数据建立一套牢固、可靠的随机过程模型,样本越大,客户未来价值的预测结果就越接近未来的事实。其中二维样本数据是指客户购买频率与购买金额是两个相互独立的不同的行为维度,不具有相关性。
RFM方法只能预测客户未来购买金额(或银行未来收益情况),却不能预测出未来产品成本和关系营销费用。而采取平均法或移动平均法将客户历史价值、历史关系营销费用直接应用到客户未来,显然不适合;同样,采取RFM方法的概率分析方法来推断客户未来价值也是不适合的。因为未来产品成本和未来关系营销费用并不是源自客户的随机行为,而是由银行整体产品成本控制和差异化营销决定的,其未来变化不一定按趋势平滑,未来客户的情况可能会出现逆反或抖动。因此,预测未来产品成本和关系营销费用需要采取其他方法。
首先要明确,未来产品成本和未来关系营销费用并不是随机现象,而是遵循各自发生的规律;且客户未来关系营销费用服从客户历史关系营销费用与购买金额的比例,即服从关系营销投入产出比。对于信用卡客户而言,通常以“年”为最小期数进行分析和预测,历史区间和未来区间是连续的,即两者之间无交易期数。所以,未来产品成本和未来关系营销费用的变化符合银行整体产品成本和营销费用的线性拟合回归规律。
因此,对于信用卡客户,“未来产品成本”预测模型为:
未来产品成本 = 未来购买金额 *(1-CRM毛利率),CRM毛利 = 购买金额 – 产品成本 – 关系营销费用
对于“未来关系营销费用”,定义:
Ratei = ∑客户历史关系营销费用/∑客户历史购买金额
Expensei = 客户历史最小关系营销费用(须大于0)
Monetaryi = 客户未来购买金额
X = Monetaryi * Ratei
因此,如果X>Expensei,那么“未来关系营销费用”=X。否则,如果Monetaryi<Expensei,那么“未来关系营销费用”=X;如果Monetaryi≥Expensei,那么“未来关系营销费用”=Expensei。
从以上分析,客户价值 = CRM毛利 = 购买金额 – 产品成本 – 关系营销费用。因此,在完整的客户关系生命周期内(即从建立关系到未流失的最近一次交易),分析客户未来价值的意义远远大于分析客户历史价值,因此通常意义上的客户价值分析就是对客户未来的价值进行分析和预测。
对于预测出的客户未来价值的结果,可按客户价值分层,并将传统的整体大众营销推进到分层差异化营销、一对一差异化营销的高度,其立足点就是客户价值的差异化分析。
通过分析和预测客户未来价值,即可清楚一旦高端客户、大客户流失将会造成未来怎样的利润损失,也可以挖掘出那些临近亏损或负价值的客户,并进行置疑分析,找出对策。但同时也要认识到,即使预测出客户的未来价值较高,也只能说明其价值势能(即潜在购买力)较高,坐等客户主动上门的价值动能(实际购买力)是不现实的,还需要通过其他沟通交流和营销渠道(如人工坐席外呼、短信发送、微博私信、微信、邮件推送等)与客户互动,推动客户追加购买、交叉购买。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19