
信用卡客户价值分析
让历史告诉未来。客户价值分析就是通过数学模型由客户历史数据预测客户未来购买力,这是数据挖掘与数据分析中一个重要的研究和应用方向。RMF方法就是让历史告诉未来的趋势分析法,利用RMF方法科学地预测老客户未来的购买金额,然后对产品成本、关系营销费用等进行推算,即可按年、按季度、按月预测出客户未来价值。这里以信用卡为例,讨论和分析信用卡客户价值。
对银行而言,预测客户未来价值能够使银行将传统的整体大众营销推进到分层差异化营销、一对一差异化营销的高度,对不同的分层客户采取不同的营销模式、产品策略和服务价格,从而推动和促进客户购买交易。
根据RFM方法,“客户价值”预测模型为:
客户未来价值 = 银行未来收益 – 未来产品成本 – 未来关系营销费用
对于信用卡客户,我们定义此处的“未来”是指未来一年(也可以是未来一季度)。“银行收益”包括信用卡年费、商户佣金、逾期利息,以及其他手续费等;“产品成本”即产品研发、维护和服务成本,包括发卡、制卡、换卡和邮寄等费用,以及其他服务费用;“关系营销费用”即关系维护和营销成本,包括商户活动、积分礼品兑换、营销宣传等。
RFM方法是目前国际上最成熟、最通用、最被接受的客户价值分析的主流预测方法。实际上,RFM方法是一整套客户价值分析方法中的一部分(其中,R:最近购买日Recency,F:购买频率Frequency,M:平均单次购买金额Monetary),但是RFM方法最具有代表性,其它还包括客户购买行为随机过程模型、马可夫链状态移转矩阵方法、贝氏机率推导状态移转概率方法和拟合回归分析方法等。
由于“银行收益”包括信用卡年费、商户佣金、逾期利息,以及其他手续费等,这里统一称为“购买金额”。因此,“客户未来购买金额”预测模型为:
客户未来购买金额 = 未来购买频率 * 未来平均金额 * 未来购买频率概率 * 未来平均金额概率
其中,未来购买频率、未来平均金额、未来购买频率概率、未来平均金额概率均可通过客户购买行为的随机过程模型来描述和求解。对于信用卡客户,“客户购买行为”包括刷卡、透支、取现、支付、分期等,以及客户消费习惯、还款习惯、收入贡献、信用额度、用卡来往区间、逾期时长、进件通路、客户服务和副卡的客户购买行为等。
根据RFM方法预测过程,随机过程模型除了推导和计算客户未来购买频率概率、未来平均金额概率的密度分配之外,还隐藏着客户未来购买频率、未来平均金额的状态移转期望值和概率。因此,除了使用随机过程模型之外,还需使用贝氏机率方法推导状态移转期望值和概率。
此外,要科学地分析和预测客户未来价值,有必要用长度和宽度的二维样本数据建立一套牢固、可靠的随机过程模型,样本越大,客户未来价值的预测结果就越接近未来的事实。其中二维样本数据是指客户购买频率与购买金额是两个相互独立的不同的行为维度,不具有相关性。
RFM方法只能预测客户未来购买金额(或银行未来收益情况),却不能预测出未来产品成本和关系营销费用。而采取平均法或移动平均法将客户历史价值、历史关系营销费用直接应用到客户未来,显然不适合;同样,采取RFM方法的概率分析方法来推断客户未来价值也是不适合的。因为未来产品成本和未来关系营销费用并不是源自客户的随机行为,而是由银行整体产品成本控制和差异化营销决定的,其未来变化不一定按趋势平滑,未来客户的情况可能会出现逆反或抖动。因此,预测未来产品成本和关系营销费用需要采取其他方法。
首先要明确,未来产品成本和未来关系营销费用并不是随机现象,而是遵循各自发生的规律;且客户未来关系营销费用服从客户历史关系营销费用与购买金额的比例,即服从关系营销投入产出比。对于信用卡客户而言,通常以“年”为最小期数进行分析和预测,历史区间和未来区间是连续的,即两者之间无交易期数。所以,未来产品成本和未来关系营销费用的变化符合银行整体产品成本和营销费用的线性拟合回归规律。
因此,对于信用卡客户,“未来产品成本”预测模型为:
未来产品成本 = 未来购买金额 *(1-CRM毛利率),CRM毛利 = 购买金额 – 产品成本 – 关系营销费用
对于“未来关系营销费用”,定义:
Ratei = ∑客户历史关系营销费用/∑客户历史购买金额
Expensei = 客户历史最小关系营销费用(须大于0)
Monetaryi = 客户未来购买金额
X = Monetaryi * Ratei
因此,如果X>Expensei,那么“未来关系营销费用”=X。否则,如果Monetaryi<Expensei,那么“未来关系营销费用”=X;如果Monetaryi≥Expensei,那么“未来关系营销费用”=Expensei。
从以上分析,客户价值 = CRM毛利 = 购买金额 – 产品成本 – 关系营销费用。因此,在完整的客户关系生命周期内(即从建立关系到未流失的最近一次交易),分析客户未来价值的意义远远大于分析客户历史价值,因此通常意义上的客户价值分析就是对客户未来的价值进行分析和预测。
对于预测出的客户未来价值的结果,可按客户价值分层,并将传统的整体大众营销推进到分层差异化营销、一对一差异化营销的高度,其立足点就是客户价值的差异化分析。
通过分析和预测客户未来价值,即可清楚一旦高端客户、大客户流失将会造成未来怎样的利润损失,也可以挖掘出那些临近亏损或负价值的客户,并进行置疑分析,找出对策。但同时也要认识到,即使预测出客户的未来价值较高,也只能说明其价值势能(即潜在购买力)较高,坐等客户主动上门的价值动能(实际购买力)是不现实的,还需要通过其他沟通交流和营销渠道(如人工坐席外呼、短信发送、微博私信、微信、邮件推送等)与客户互动,推动客户追加购买、交叉购买。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28