
信用卡客户价值分析
让历史告诉未来。客户价值分析就是通过数学模型由客户历史数据预测客户未来购买力,这是数据挖掘与数据分析中一个重要的研究和应用方向。RMF方法就是让历史告诉未来的趋势分析法,利用RMF方法科学地预测老客户未来的购买金额,然后对产品成本、关系营销费用等进行推算,即可按年、按季度、按月预测出客户未来价值。这里以信用卡为例,讨论和分析信用卡客户价值。
对银行而言,预测客户未来价值能够使银行将传统的整体大众营销推进到分层差异化营销、一对一差异化营销的高度,对不同的分层客户采取不同的营销模式、产品策略和服务价格,从而推动和促进客户购买交易。
根据RFM方法,“客户价值”预测模型为:
客户未来价值 = 银行未来收益 – 未来产品成本 – 未来关系营销费用
对于信用卡客户,我们定义此处的“未来”是指未来一年(也可以是未来一季度)。“银行收益”包括信用卡年费、商户佣金、逾期利息,以及其他手续费等;“产品成本”即产品研发、维护和服务成本,包括发卡、制卡、换卡和邮寄等费用,以及其他服务费用;“关系营销费用”即关系维护和营销成本,包括商户活动、积分礼品兑换、营销宣传等。
RFM方法是目前国际上最成熟、最通用、最被接受的客户价值分析的主流预测方法。实际上,RFM方法是一整套客户价值分析方法中的一部分(其中,R:最近购买日Recency,F:购买频率Frequency,M:平均单次购买金额Monetary),但是RFM方法最具有代表性,其它还包括客户购买行为随机过程模型、马可夫链状态移转矩阵方法、贝氏机率推导状态移转概率方法和拟合回归分析方法等。
由于“银行收益”包括信用卡年费、商户佣金、逾期利息,以及其他手续费等,这里统一称为“购买金额”。因此,“客户未来购买金额”预测模型为:
客户未来购买金额 = 未来购买频率 * 未来平均金额 * 未来购买频率概率 * 未来平均金额概率
其中,未来购买频率、未来平均金额、未来购买频率概率、未来平均金额概率均可通过客户购买行为的随机过程模型来描述和求解。对于信用卡客户,“客户购买行为”包括刷卡、透支、取现、支付、分期等,以及客户消费习惯、还款习惯、收入贡献、信用额度、用卡来往区间、逾期时长、进件通路、客户服务和副卡的客户购买行为等。
根据RFM方法预测过程,随机过程模型除了推导和计算客户未来购买频率概率、未来平均金额概率的密度分配之外,还隐藏着客户未来购买频率、未来平均金额的状态移转期望值和概率。因此,除了使用随机过程模型之外,还需使用贝氏机率方法推导状态移转期望值和概率。
此外,要科学地分析和预测客户未来价值,有必要用长度和宽度的二维样本数据建立一套牢固、可靠的随机过程模型,样本越大,客户未来价值的预测结果就越接近未来的事实。其中二维样本数据是指客户购买频率与购买金额是两个相互独立的不同的行为维度,不具有相关性。
RFM方法只能预测客户未来购买金额(或银行未来收益情况),却不能预测出未来产品成本和关系营销费用。而采取平均法或移动平均法将客户历史价值、历史关系营销费用直接应用到客户未来,显然不适合;同样,采取RFM方法的概率分析方法来推断客户未来价值也是不适合的。因为未来产品成本和未来关系营销费用并不是源自客户的随机行为,而是由银行整体产品成本控制和差异化营销决定的,其未来变化不一定按趋势平滑,未来客户的情况可能会出现逆反或抖动。因此,预测未来产品成本和关系营销费用需要采取其他方法。
首先要明确,未来产品成本和未来关系营销费用并不是随机现象,而是遵循各自发生的规律;且客户未来关系营销费用服从客户历史关系营销费用与购买金额的比例,即服从关系营销投入产出比。对于信用卡客户而言,通常以“年”为最小期数进行分析和预测,历史区间和未来区间是连续的,即两者之间无交易期数。所以,未来产品成本和未来关系营销费用的变化符合银行整体产品成本和营销费用的线性拟合回归规律。
因此,对于信用卡客户,“未来产品成本”预测模型为:
未来产品成本 = 未来购买金额 *(1-CRM毛利率),CRM毛利 = 购买金额 – 产品成本 – 关系营销费用
对于“未来关系营销费用”,定义:
Ratei = ∑客户历史关系营销费用/∑客户历史购买金额
Expensei = 客户历史最小关系营销费用(须大于0)
Monetaryi = 客户未来购买金额
X = Monetaryi * Ratei
因此,如果X>Expensei,那么“未来关系营销费用”=X。否则,如果Monetaryi<Expensei,那么“未来关系营销费用”=X;如果Monetaryi≥Expensei,那么“未来关系营销费用”=Expensei。
从以上分析,客户价值 = CRM毛利 = 购买金额 – 产品成本 – 关系营销费用。因此,在完整的客户关系生命周期内(即从建立关系到未流失的最近一次交易),分析客户未来价值的意义远远大于分析客户历史价值,因此通常意义上的客户价值分析就是对客户未来的价值进行分析和预测。
对于预测出的客户未来价值的结果,可按客户价值分层,并将传统的整体大众营销推进到分层差异化营销、一对一差异化营销的高度,其立足点就是客户价值的差异化分析。
通过分析和预测客户未来价值,即可清楚一旦高端客户、大客户流失将会造成未来怎样的利润损失,也可以挖掘出那些临近亏损或负价值的客户,并进行置疑分析,找出对策。但同时也要认识到,即使预测出客户的未来价值较高,也只能说明其价值势能(即潜在购买力)较高,坐等客户主动上门的价值动能(实际购买力)是不现实的,还需要通过其他沟通交流和营销渠道(如人工坐席外呼、短信发送、微博私信、微信、邮件推送等)与客户互动,推动客户追加购买、交叉购买。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18