
大数据还是太多信息
移动互联网时代的数据正在疯长,大数据是现在技术界最热的流行语之一。一种普遍的观点认为掌握实时数据分析与决策能力者必能占得先机,但也有人认为数据再多也无法帮助我们预测未来,我们把这两种观点编译如下,也请大家谈谈自己的看法。
我们都知道现在地球上的信息太多,但是怎么多法,没有人知道。
IBM负责超级计算机研发的Dave Turek给了我们一个答案,根据IBM的估算,人类自有史以来至2003年所创造的信息量为5艾字节(50亿GB),而到了去年,人类每两天就产生了如此多的信息量。据Turek的预测,到明年的时候,我们生成这样规模的信息量只需要10分钟!
这怎么可能?!数据为何滥生到了这种地步?这么说吧,每次你的手机发送其GPS位置,每次你在网上买东西,每次你点击社交网络上的“喜欢”,你就给数字信息的海洋奉献了一个水滴。现在这片海洋大部分已经为此类数据所覆盖。
短信、客户记录、ATM交易、监控摄像……这条清单可以列得很长。我们有一个流行语总结这些东西:“大数据”,尽管这个词难以表述我们所创造的这个怪物的规模。
这是技术超出我们使用能力的一个最新例子。在这个例子里,我们还没能跟上自己捕捉信息的能力,所以这段时间管理大师总喜欢说未来属于能善用自己所收集数据的公司,尤其是具备实时利用能力者。
对于企业来说,能够解析自己客户的每一个数字化的蛛丝马迹者必将拥有领先优势,这种能力不仅仅在于能够了解过去几个小时里谁在哪里买了什么东西,而且还能够知悉他们是否对此发表了微博、有没有在社交网络上发过相关相片。
城市亦是如此。能够收集成千上万个传感器的数据,然后描绘出都市的数字化地图,并能够将城市生活的异常行为(如交通流量)变成科学的一定能够脱颖而出。
不奇怪的是,政治运动也已经开始这样的尝试,发疯地挖掘数据已经成为政客聚焦“纳米定位(nanotargeting)”选民策略的一部分,这样才能够精准地知道如何才能捞到选票。
寻求对零碎数据进行解释的狂热解释了Google上周为什么要开始销售一款名为BigQuery的产品,该软件可以在数秒钟之内扫描几TB的信息。也正因为此,数据分析初创公司Splunk上市首日的股价即飙升了90%。
数据科学家的崛起
但是,哪怕你拥有最好的数据解密工具也不能保证就能拥有大智慧。很少有公司拥有专门受训的员工,缺乏评估堆积如山的数据(包括数百万社交网络页面、智能手机上的非结构数据)的能力,更不用说对此做些什么。
去年麦肯锡发布了一份报告,把“大数据”形容为“创新的下一个前沿阵地”,但该机构同时也预测说到2018年,美国公司在这方面将会出现严重的人才短缺,具备必要的分析技能的人才缺口多达19万之巨。同时还认为美国具备数据知识的经理的需求将会超过150万(中国呢?)。
信息超载?
尽管如此,并非所有人都相信大数据的魔力。沃顿商学院的Peter Fader教授并不认为数据越多越好。同时他也不认为企业应该竭尽所能去了解自己的客户。他认为现在对数据聚合的关注太多了,而实际上,只有围绕着真正的分析进行的数据收集量才有意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16