京公网安备 11010802034615号
经营许可证编号:京B2-20210330
又剁手了?大数据告诉你,电商会把假货发给谁
现在已进入“大数据”时代,电商陷阱也越来越科幻。
双十一了, 今天照妖镜再次揭露,来看看网上奸商的新玩法。
内幕
你在网上买件大牌化妆品,在订单提交→发货之前,系统会查询分析你在全平台的购物数据(大数据内部共享):购买均价,常购品牌,退货率。
如果你同类产品消费倾向绝对大部分在100~200元品牌,系统就判定你没用过大牌真品,在后台将你备注:低风险,发的货有30%几率是高仿货。如果在你购买记录里多次购买品牌,就自动分配真品。
真相
你的消费记录,购买记录,客单价记录,将作为发货参考数据被系统识别,看人下刀更精准。
内幕
很多人有类似经历:买来的产品有小问题又不影响使用怎么办?赶紧退!电商常常解释是因为发货前没有检查货品!这是假话,每一批次的瑕疵产品都有记录,之所以发给你,是因为在你的综合退货率低于电商平均标准。系统会认定你这位客户“好说话”“会将就”,一有垃圾货就优先“照顾”你。
真相
用户的投诉率,退货率都记录在识别系统里,这些数据将作为电商判断你“忍耐力”的参考,退货率低于10%的用户,会收到更多垃圾产品。
内幕
先款后货的客户,收到瑕疵品机率是货到付款的3倍,这是大部分电商的潜规则。货到付款的质量问题处理时间是1~2天,先款后货的处理时间是5~6天。
电商巧妙利用消费者嫌麻烦心理,将瑕疵产品更多发给先款后货客户,甚至拉长问题处理时间,要不换货,要不售后。
退货退钱?先让客服和你“谈谈心”,你就慢慢等着他们反馈给领导吧。
真相
售后时间超过6天是大部分人的“耐心极限”,电商将处理时间设定在耐心临界点,就是为了处理“二手货”,这些尾货全部来源于厂商,供应价低,利润更高用户的投诉率,退货率都记录在识别系统里,这些数据将作为电商判断你“忍耐力”的参考,退货率低于10%的用户,会收到更多垃圾产品。
内幕
并不是二三四线城市就一定发假货。新的电商系统能识别收货手机与收货地址所在城市有没有产品专卖店。如果没有,你也没买过同类产品,系统会“放心”分配高仿货给你。
如有专卖店,系统会查询你是否买过同品牌产品。内部消息:使用最新系统售卖高仿货,退货率还不到5%。
真相
不要以为在网上买东西靠运气,事实上电商有精确的数据系统作支撑,该你买到假货,你就绝对买不到真货。
内幕
消费者前脚买完东西,后脚就有骗子电话打上门,购买明细都了解得一清二楚,这是什么原因?问题就出在大数据。订单提交成功后,你的个人数据马上被自动录入系统,上传到电商联盟平台共享,所有电商都能查到你资料,这个过程会经很多人的手,开发公司,数据人员,处处是漏洞。
真相
不要以为有隐私,你的个人资料,消费倾向早已掌握在所有电商手里。通过数据系统就能知道你对假货的反应,能不能识别假货。就像所有银行共享的信用卡黑名单,上了黑名单,所有银行都不同意你的信用卡申请。电商之所有不愿意解决信息泄露问题,是因为他不愿意放弃收集用户数据,没了用户数据做分析,那共享的数据系统就没了参考依据,假货退货率会远高于现在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16