
又剁手了?大数据告诉你,电商会把假货发给谁
现在已进入“大数据”时代,电商陷阱也越来越科幻。
双十一了, 今天照妖镜再次揭露,来看看网上奸商的新玩法。
内幕
你在网上买件大牌化妆品,在订单提交→发货之前,系统会查询分析你在全平台的购物数据(大数据内部共享):购买均价,常购品牌,退货率。
如果你同类产品消费倾向绝对大部分在100~200元品牌,系统就判定你没用过大牌真品,在后台将你备注:低风险,发的货有30%几率是高仿货。如果在你购买记录里多次购买品牌,就自动分配真品。
真相
你的消费记录,购买记录,客单价记录,将作为发货参考数据被系统识别,看人下刀更精准。
内幕
很多人有类似经历:买来的产品有小问题又不影响使用怎么办?赶紧退!电商常常解释是因为发货前没有检查货品!这是假话,每一批次的瑕疵产品都有记录,之所以发给你,是因为在你的综合退货率低于电商平均标准。系统会认定你这位客户“好说话”“会将就”,一有垃圾货就优先“照顾”你。
真相
用户的投诉率,退货率都记录在识别系统里,这些数据将作为电商判断你“忍耐力”的参考,退货率低于10%的用户,会收到更多垃圾产品。
内幕
先款后货的客户,收到瑕疵品机率是货到付款的3倍,这是大部分电商的潜规则。货到付款的质量问题处理时间是1~2天,先款后货的处理时间是5~6天。
电商巧妙利用消费者嫌麻烦心理,将瑕疵产品更多发给先款后货客户,甚至拉长问题处理时间,要不换货,要不售后。
退货退钱?先让客服和你“谈谈心”,你就慢慢等着他们反馈给领导吧。
真相
售后时间超过6天是大部分人的“耐心极限”,电商将处理时间设定在耐心临界点,就是为了处理“二手货”,这些尾货全部来源于厂商,供应价低,利润更高用户的投诉率,退货率都记录在识别系统里,这些数据将作为电商判断你“忍耐力”的参考,退货率低于10%的用户,会收到更多垃圾产品。
内幕
并不是二三四线城市就一定发假货。新的电商系统能识别收货手机与收货地址所在城市有没有产品专卖店。如果没有,你也没买过同类产品,系统会“放心”分配高仿货给你。
如有专卖店,系统会查询你是否买过同品牌产品。内部消息:使用最新系统售卖高仿货,退货率还不到5%。
真相
不要以为在网上买东西靠运气,事实上电商有精确的数据系统作支撑,该你买到假货,你就绝对买不到真货。
内幕
消费者前脚买完东西,后脚就有骗子电话打上门,购买明细都了解得一清二楚,这是什么原因?问题就出在大数据。订单提交成功后,你的个人数据马上被自动录入系统,上传到电商联盟平台共享,所有电商都能查到你资料,这个过程会经很多人的手,开发公司,数据人员,处处是漏洞。
真相
不要以为有隐私,你的个人资料,消费倾向早已掌握在所有电商手里。通过数据系统就能知道你对假货的反应,能不能识别假货。就像所有银行共享的信用卡黑名单,上了黑名单,所有银行都不同意你的信用卡申请。电商之所有不愿意解决信息泄露问题,是因为他不愿意放弃收集用户数据,没了用户数据做分析,那共享的数据系统就没了参考依据,假货退货率会远高于现在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29