
大数据交易会在实际操作中面临哪些问题
随着大数据时代的到来,数据本身也在商品化。数据已经逐渐成为一种新型生产要素,由此产生了数据交易的新兴环节。数据商品化促使市场上有人忙于搭建数据共享、交换与交易平台,为数据资源供给方和需求方提供交易环境和服务。
数据真的可以交易吗?数据交易会在实际操作中面临哪些问题?
在第一财经研究院携手明略数据联手举办的《中国大数据应用前沿调研报告暨大数据技术精锐企业图谱》发布大会上,来自业内的数据专家指出,由于数据的边际成本为零,数据交易与传统交易概念完全不同。如果用物权交易理念来做数据交易市场是无解的。
相同数据,不同人能挖掘出不同价值
工信部专家、中关村大数据产业联盟副秘书长陈新河指出,目前社会上已经出现了一些大数据交易市场,包括贵阳大数据交易所、数据堂等,预计未来还会涌现更多类似的平台。但是大数据在最开始产生交易这个理念的时候就存在一个严重错误。
在工业时代,我们有类似于农贸市场、交易市场一样的东西,这并不代表大数据也一定应该有交易市场。数据的交易与工业时代商品交易大不一样,工业商品交易伴随着实质物权、产权的转移。但是数据的边际成本为零,这导致原来的农贸市场、交易所那一套理念发生变化。“所以目前来看,用物权交易的理念来做数据交易市场是无解的。” 陈新河说。
他解释称,一些人认为把大数据作为一种资产,在交易的过程中索取佣金,搞大数据交易市场是一个稳赚不赔的行业。但实际上,如果将一份原始数据拿去交易,结果可能导致数据在别人那里产生的价值比自己高的多。同时,不同人对于同样的数据所产生的价值也是不同的。例如同样的数据,卖给A公司50万,价格就已经很高了(overprice),因为A公司利用这些数据只能赚30万。但是卖给B公司,也许B公司能赚200万美元。
对此,北京明略软件系统有限公司董事长吴明辉结合数据公司的实践经验指出,直接交易原始数据存在很大风险。“但数据公司可以通过一些巧妙的方法去做好数据的挖掘和加工。” 吴明辉表示。
吴明辉认为,数据的交易理念与传统交易很不一样,第一,同样的数据可以产生很多不同应用。第二,数据可以重复利用。这就意味着交易原始数据在产权和所有权上会出现很大问题。“我在做交易的时候,你把我的数据买走了,之后你继续卖怎么办?硬生生地将原始数据做交易实际上是对数据行业非常大的挑战。”他说。
数据本身也有所有权。例如阿里巴巴很多数据所有权其实在每位顾客手里,消费者在阿里网站上消费,阿里得以存储这些的数据,但本质上这些数据还是消费者的,消费者并不允许阿里将这些数据给别人用,否则就侵犯了消费者的隐私。如果直接把原始数据进行交易将产生更大法律风险。
吴明辉表示,这时候公司不会直接交易原始数据,而是通常基于一些数学模型,在数据上做加工。将加工的结果提供给客户不侵犯原始数据的安全性和隐私性。以明略数据为例,公司在帮助银行、税务客户采集各种数据源时,采集过程不会直接拿到原始数据,而是建造一个数据挖掘黑盒子,将数据进行一定加工,生成的结果给客户使用,原始数据当场就清理了。数据的提供者对此也喜闻乐见,因为这样可以保证他们的数据在今后具有反复利用的价值。
大数据如何能转换“大价值”
《中国大数据应用前沿调研报告》指出,在大数据的价值链中“数据、技术与思维三足鼎立”。对于数据、技术及思维的掌握决定了大数据能够创造多少商业价值。
以金融行业为例,在数据方面,金融行业的数据已经非常之多。技术方面,大数据时代传统金融行业面临新的技术难题,传统的分析方法难以适应大数据的管理需要。企业需要更有效的数据挖掘算法。在思维方面,国外金融机构已经将大数据技术在风险控制、运营管理、营销支持及商业模式创新等领域进行了全面尝试。市场需求细分和渠道整合价值目前已经得到国内金融行业普遍认识,但大数据还有很多待发掘的价值。
鉴于此,《大数据技术精锐企业图谱》的设计理念就是从数据和技术出发,展现中国大数据产业,同时重新审核了每家企业的分类属性,更加客观的展现首批入选企业的大数据业务发展现状。其中数据类包括数据整合应用、数据商品化、数据采集提供;技术类包括解决方案供应商、应用程序供应商、基础架构供应商。
大数据产业与其他产业的融合是由点及面的逻辑点,即企业对大数据应用、平台、解决方案等对企业业务流程支持的需求对接面。通过数据采集、数据商品化、数据整合,应用提供商将产业内、不同产业间、企业内、不同企业间的安全数据流通与共享变为可能。大数据与产业融合成为四通八达、全面连接发展的面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25