
大数据交易会在实际操作中面临哪些问题
随着大数据时代的到来,数据本身也在商品化。数据已经逐渐成为一种新型生产要素,由此产生了数据交易的新兴环节。数据商品化促使市场上有人忙于搭建数据共享、交换与交易平台,为数据资源供给方和需求方提供交易环境和服务。
数据真的可以交易吗?数据交易会在实际操作中面临哪些问题?
在第一财经研究院携手明略数据联手举办的《中国大数据应用前沿调研报告暨大数据技术精锐企业图谱》发布大会上,来自业内的数据专家指出,由于数据的边际成本为零,数据交易与传统交易概念完全不同。如果用物权交易理念来做数据交易市场是无解的。
相同数据,不同人能挖掘出不同价值
工信部专家、中关村大数据产业联盟副秘书长陈新河指出,目前社会上已经出现了一些大数据交易市场,包括贵阳大数据交易所、数据堂等,预计未来还会涌现更多类似的平台。但是大数据在最开始产生交易这个理念的时候就存在一个严重错误。
在工业时代,我们有类似于农贸市场、交易市场一样的东西,这并不代表大数据也一定应该有交易市场。数据的交易与工业时代商品交易大不一样,工业商品交易伴随着实质物权、产权的转移。但是数据的边际成本为零,这导致原来的农贸市场、交易所那一套理念发生变化。“所以目前来看,用物权交易的理念来做数据交易市场是无解的。” 陈新河说。
他解释称,一些人认为把大数据作为一种资产,在交易的过程中索取佣金,搞大数据交易市场是一个稳赚不赔的行业。但实际上,如果将一份原始数据拿去交易,结果可能导致数据在别人那里产生的价值比自己高的多。同时,不同人对于同样的数据所产生的价值也是不同的。例如同样的数据,卖给A公司50万,价格就已经很高了(overprice),因为A公司利用这些数据只能赚30万。但是卖给B公司,也许B公司能赚200万美元。
对此,北京明略软件系统有限公司董事长吴明辉结合数据公司的实践经验指出,直接交易原始数据存在很大风险。“但数据公司可以通过一些巧妙的方法去做好数据的挖掘和加工。” 吴明辉表示。
吴明辉认为,数据的交易理念与传统交易很不一样,第一,同样的数据可以产生很多不同应用。第二,数据可以重复利用。这就意味着交易原始数据在产权和所有权上会出现很大问题。“我在做交易的时候,你把我的数据买走了,之后你继续卖怎么办?硬生生地将原始数据做交易实际上是对数据行业非常大的挑战。”他说。
数据本身也有所有权。例如阿里巴巴很多数据所有权其实在每位顾客手里,消费者在阿里网站上消费,阿里得以存储这些的数据,但本质上这些数据还是消费者的,消费者并不允许阿里将这些数据给别人用,否则就侵犯了消费者的隐私。如果直接把原始数据进行交易将产生更大法律风险。
吴明辉表示,这时候公司不会直接交易原始数据,而是通常基于一些数学模型,在数据上做加工。将加工的结果提供给客户不侵犯原始数据的安全性和隐私性。以明略数据为例,公司在帮助银行、税务客户采集各种数据源时,采集过程不会直接拿到原始数据,而是建造一个数据挖掘黑盒子,将数据进行一定加工,生成的结果给客户使用,原始数据当场就清理了。数据的提供者对此也喜闻乐见,因为这样可以保证他们的数据在今后具有反复利用的价值。
大数据如何能转换“大价值”
《中国大数据应用前沿调研报告》指出,在大数据的价值链中“数据、技术与思维三足鼎立”。对于数据、技术及思维的掌握决定了大数据能够创造多少商业价值。
以金融行业为例,在数据方面,金融行业的数据已经非常之多。技术方面,大数据时代传统金融行业面临新的技术难题,传统的分析方法难以适应大数据的管理需要。企业需要更有效的数据挖掘算法。在思维方面,国外金融机构已经将大数据技术在风险控制、运营管理、营销支持及商业模式创新等领域进行了全面尝试。市场需求细分和渠道整合价值目前已经得到国内金融行业普遍认识,但大数据还有很多待发掘的价值。
鉴于此,《大数据技术精锐企业图谱》的设计理念就是从数据和技术出发,展现中国大数据产业,同时重新审核了每家企业的分类属性,更加客观的展现首批入选企业的大数据业务发展现状。其中数据类包括数据整合应用、数据商品化、数据采集提供;技术类包括解决方案供应商、应用程序供应商、基础架构供应商。
大数据产业与其他产业的融合是由点及面的逻辑点,即企业对大数据应用、平台、解决方案等对企业业务流程支持的需求对接面。通过数据采集、数据商品化、数据整合,应用提供商将产业内、不同产业间、企业内、不同企业间的安全数据流通与共享变为可能。大数据与产业融合成为四通八达、全面连接发展的面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22