
大数据时代的量化投资
金融改革和金融创新在上海的未来发展中占据着至关重要的位置。国家根据发展的全局统筹推出上海自由贸易试验区,进一步推进上海四个中心建设,将为中国的金融改革提供丰富的经验,也将带来巨大的投资机遇。金融市场的逐步开放将会大大促进金融创新的步伐,给投资者带来越来越多的投资渠道,同时也将加速中国金融市场与国际金融市场的融合。毫无疑问,很多国外成熟的投资工具和投资方法将逐步进入中国市场。以期货市场为代表的衍生品市场将迎来飞速增长,以量化投资为代表的投资方法也将得到投资者更大的关注。最近几年进入公众视野的量化投资,由于其比较强的技术性(数学和计算机),再加上诸多媒体对其神秘化的描述,许多投资者对此仍然觉得比较陌生。我想结合量化投资的理念以及国外量化投资的发展和大家分享对中国量化投资发展的几点看法。
1. 量化投资的核心是风险的量化管理。
理性的投资者在投资时追求的不只是收益,更重要的是对风险的管理。现代金融的理论创新基本上都是围绕着金融风险的管理展开的,比如Markowitz的投资组合理论和Sharpe的资本资产定价模型。去年的诺贝尔奖得主Fama提出了基于风险要素分析的投资模型。在越来越复杂的浩瀚的资本市场中,如何衡量各种投资工具的风险以及优化投资组合变得更加重要,传统的定性投资方式也因此受到了冲击和挑战。在此背景下,量化投资的出现符合市场的需求,采取量化的方式和手段对风险进行评估,是一种严谨透明的投资理念。比如在国外比较流行的风险均衡(risk parity)模型,就是一种典型的从风险优化中追求收益的一种创新模型,在过去几年获得了巨大的成功。
2. 大数据处理技术的发展给量化投资提供强大的技术支持。
有很多学者将计算机以及互联网的出现称之为第三次工业革命。在这个信息科技高速发展的变革时代,每个行业都面临着大数据时代带来的挑战。在投资业,各种渠道提供的海量信息以及高频金融交易数据都在深刻地影响这个行业的发展以及金融市场的有效性。信息系统的发展以及统计工具的进步,都为投资者提供了一种向大数据要收益的可能性。在大数据时代背景下,各种针对大数据处理的技术的发展将在量化投资中得到应用,为投资者带来更大的回报。
3. 金融创新给期待量化投资的投资者提供了丰富的投资工具。
自20世纪50年代以来,金融市场出于规避监管,转嫁风险和防范风险等需要,推出了很多创新性的金融产品,提供了越来越丰富的投资工具。金融衍生品在金融市场中占的比例越来越重要,除了以传统的股权和债券产品为标的的衍生品外,以大宗商品等非传统资产为标的的衍生品发展也如火如荼。比如当前中国衍生品市场中交易量最大的主要是商品期货,交易金额总量已经是国民生产总值的2.8倍。在海外,商品期货市场的蓬勃发展还推动了专著于投资于期货市场的量化投资基金的发展,比如,在2013年底全球2万7千亿美元的对冲基金市场中,面向商业期货的对冲基金CTA(商品期货交易顾问,主要投资期货)的资产规模已经达到了4千亿美元。
4. 中国量化投资的前景广阔。
相比国外的金融市场,中国的金融市场还处在起步期。在传统的股权和债券市场中,市场监管还相对比较严。衍生品市场的发展也还相对比较滞后。比如我们前面提到的商品期货市场,虽然当前的交易金额总量已经是中国国民生产总值的2.8倍,但是在美国这个比例是55倍。不过,差距隐藏着增长潜力。我们看到了中国政府在发展金融市场中的战略眼光和雄心。党的十八届三中全会提出了“健全多层次资本市场体系”的指示精神,为十二五期间的资本市场发展指明了方向。随着金融投资工具的增加,量化投资将显示出其更大的作用,帮助投资者在更好的风险管控中寻求最佳收益回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08