
大数据时代的量化投资
金融改革和金融创新在上海的未来发展中占据着至关重要的位置。国家根据发展的全局统筹推出上海自由贸易试验区,进一步推进上海四个中心建设,将为中国的金融改革提供丰富的经验,也将带来巨大的投资机遇。金融市场的逐步开放将会大大促进金融创新的步伐,给投资者带来越来越多的投资渠道,同时也将加速中国金融市场与国际金融市场的融合。毫无疑问,很多国外成熟的投资工具和投资方法将逐步进入中国市场。以期货市场为代表的衍生品市场将迎来飞速增长,以量化投资为代表的投资方法也将得到投资者更大的关注。最近几年进入公众视野的量化投资,由于其比较强的技术性(数学和计算机),再加上诸多媒体对其神秘化的描述,许多投资者对此仍然觉得比较陌生。我想结合量化投资的理念以及国外量化投资的发展和大家分享对中国量化投资发展的几点看法。
1. 量化投资的核心是风险的量化管理。
理性的投资者在投资时追求的不只是收益,更重要的是对风险的管理。现代金融的理论创新基本上都是围绕着金融风险的管理展开的,比如Markowitz的投资组合理论和Sharpe的资本资产定价模型。去年的诺贝尔奖得主Fama提出了基于风险要素分析的投资模型。在越来越复杂的浩瀚的资本市场中,如何衡量各种投资工具的风险以及优化投资组合变得更加重要,传统的定性投资方式也因此受到了冲击和挑战。在此背景下,量化投资的出现符合市场的需求,采取量化的方式和手段对风险进行评估,是一种严谨透明的投资理念。比如在国外比较流行的风险均衡(risk parity)模型,就是一种典型的从风险优化中追求收益的一种创新模型,在过去几年获得了巨大的成功。
2. 大数据处理技术的发展给量化投资提供强大的技术支持。
有很多学者将计算机以及互联网的出现称之为第三次工业革命。在这个信息科技高速发展的变革时代,每个行业都面临着大数据时代带来的挑战。在投资业,各种渠道提供的海量信息以及高频金融交易数据都在深刻地影响这个行业的发展以及金融市场的有效性。信息系统的发展以及统计工具的进步,都为投资者提供了一种向大数据要收益的可能性。在大数据时代背景下,各种针对大数据处理的技术的发展将在量化投资中得到应用,为投资者带来更大的回报。
3. 金融创新给期待量化投资的投资者提供了丰富的投资工具。
自20世纪50年代以来,金融市场出于规避监管,转嫁风险和防范风险等需要,推出了很多创新性的金融产品,提供了越来越丰富的投资工具。金融衍生品在金融市场中占的比例越来越重要,除了以传统的股权和债券产品为标的的衍生品外,以大宗商品等非传统资产为标的的衍生品发展也如火如荼。比如当前中国衍生品市场中交易量最大的主要是商品期货,交易金额总量已经是国民生产总值的2.8倍。在海外,商品期货市场的蓬勃发展还推动了专著于投资于期货市场的量化投资基金的发展,比如,在2013年底全球2万7千亿美元的对冲基金市场中,面向商业期货的对冲基金CTA(商品期货交易顾问,主要投资期货)的资产规模已经达到了4千亿美元。
4. 中国量化投资的前景广阔。
相比国外的金融市场,中国的金融市场还处在起步期。在传统的股权和债券市场中,市场监管还相对比较严。衍生品市场的发展也还相对比较滞后。比如我们前面提到的商品期货市场,虽然当前的交易金额总量已经是中国国民生产总值的2.8倍,但是在美国这个比例是55倍。不过,差距隐藏着增长潜力。我们看到了中国政府在发展金融市场中的战略眼光和雄心。党的十八届三中全会提出了“健全多层次资本市场体系”的指示精神,为十二五期间的资本市场发展指明了方向。随着金融投资工具的增加,量化投资将显示出其更大的作用,帮助投资者在更好的风险管控中寻求最佳收益回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29