京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的量化投资
金融改革和金融创新在上海的未来发展中占据着至关重要的位置。国家根据发展的全局统筹推出上海自由贸易试验区,进一步推进上海四个中心建设,将为中国的金融改革提供丰富的经验,也将带来巨大的投资机遇。金融市场的逐步开放将会大大促进金融创新的步伐,给投资者带来越来越多的投资渠道,同时也将加速中国金融市场与国际金融市场的融合。毫无疑问,很多国外成熟的投资工具和投资方法将逐步进入中国市场。以期货市场为代表的衍生品市场将迎来飞速增长,以量化投资为代表的投资方法也将得到投资者更大的关注。最近几年进入公众视野的量化投资,由于其比较强的技术性(数学和计算机),再加上诸多媒体对其神秘化的描述,许多投资者对此仍然觉得比较陌生。我想结合量化投资的理念以及国外量化投资的发展和大家分享对中国量化投资发展的几点看法。
1. 量化投资的核心是风险的量化管理。
理性的投资者在投资时追求的不只是收益,更重要的是对风险的管理。现代金融的理论创新基本上都是围绕着金融风险的管理展开的,比如Markowitz的投资组合理论和Sharpe的资本资产定价模型。去年的诺贝尔奖得主Fama提出了基于风险要素分析的投资模型。在越来越复杂的浩瀚的资本市场中,如何衡量各种投资工具的风险以及优化投资组合变得更加重要,传统的定性投资方式也因此受到了冲击和挑战。在此背景下,量化投资的出现符合市场的需求,采取量化的方式和手段对风险进行评估,是一种严谨透明的投资理念。比如在国外比较流行的风险均衡(risk parity)模型,就是一种典型的从风险优化中追求收益的一种创新模型,在过去几年获得了巨大的成功。
2. 大数据处理技术的发展给量化投资提供强大的技术支持。
有很多学者将计算机以及互联网的出现称之为第三次工业革命。在这个信息科技高速发展的变革时代,每个行业都面临着大数据时代带来的挑战。在投资业,各种渠道提供的海量信息以及高频金融交易数据都在深刻地影响这个行业的发展以及金融市场的有效性。信息系统的发展以及统计工具的进步,都为投资者提供了一种向大数据要收益的可能性。在大数据时代背景下,各种针对大数据处理的技术的发展将在量化投资中得到应用,为投资者带来更大的回报。
3. 金融创新给期待量化投资的投资者提供了丰富的投资工具。
自20世纪50年代以来,金融市场出于规避监管,转嫁风险和防范风险等需要,推出了很多创新性的金融产品,提供了越来越丰富的投资工具。金融衍生品在金融市场中占的比例越来越重要,除了以传统的股权和债券产品为标的的衍生品外,以大宗商品等非传统资产为标的的衍生品发展也如火如荼。比如当前中国衍生品市场中交易量最大的主要是商品期货,交易金额总量已经是国民生产总值的2.8倍。在海外,商品期货市场的蓬勃发展还推动了专著于投资于期货市场的量化投资基金的发展,比如,在2013年底全球2万7千亿美元的对冲基金市场中,面向商业期货的对冲基金CTA(商品期货交易顾问,主要投资期货)的资产规模已经达到了4千亿美元。
4. 中国量化投资的前景广阔。
相比国外的金融市场,中国的金融市场还处在起步期。在传统的股权和债券市场中,市场监管还相对比较严。衍生品市场的发展也还相对比较滞后。比如我们前面提到的商品期货市场,虽然当前的交易金额总量已经是中国国民生产总值的2.8倍,但是在美国这个比例是55倍。不过,差距隐藏着增长潜力。我们看到了中国政府在发展金融市场中的战略眼光和雄心。党的十八届三中全会提出了“健全多层次资本市场体系”的指示精神,为十二五期间的资本市场发展指明了方向。随着金融投资工具的增加,量化投资将显示出其更大的作用,帮助投资者在更好的风险管控中寻求最佳收益回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26