
揭秘证监会大数据“捕鼠”系统
徐翔不是个案,只是体量大了点。
2014年内,证监会全年罚没款4.68亿元;而过去的两个月,证监会9、10月份开出的罚单总额已是2014年全年罚没规模的近10倍。
尽管二级市场阴晴不定,但监管层的执法利剑始终高悬。利剑背后,证监会已经拥有了“利器”!
今年春季,在亚洲博鳌论坛上,谢平与朱云来的一段对话,无意间暴露了证监会的秘密。
谢平:证监会用大数据,最神奇的地方是抓内幕交易用得特别好。因为这是封闭的系统,交易所的开户、交易完全是可操作的,设计了软件爬虫,爬虫是昼夜工作的,效率很高。根据数据的相关性自动就找到哪些人在内幕交易,这不是人工做的,而且准确率非常高。每一次股票的变动,炒股的人的身份证号码、相关朋友、亲戚,再找到这个人有没有电话联系,一下子就找到了内幕交易,原来人是查不过来的,现在能查出来的。
朱云来:早就应该这样做的,不是什么新的。
谢平:原来没有,原来这个软件没有设计出来。
朱云来:三十年前就可以做。
谢平:而且软件可以自动学习、自动提高水平,这就很神奇了,也许他们引进了一些技术。但是无论如何,数据是基础。现在数据越来越多了,基础就越来越好了。
媒体按图索骥,找到了北京一家大数据公司,他们为证监会研发了一套能够精准判断市场行为的系统,对于制造开盘价、盘中对倒、老鼠仓等违规行为有着准确的判断。
其实,早在2013年来,上交所开展了打击“利用非公开信息进行交易”的“捕鼠行动”,市场监察部依托数据仓库,创造性地开展大数据应用,建立多种数据分析模型,深度挖掘,寻找案件线索,通过锁定基准日、筛查高频户,结合账户开户、历史交易情况等,确定嫌疑账户,将一只只“硕鼠”抓出来。
原博时基金经理马乐案被称为“大数据捕鼠第一单”。该案中,马乐利用其担任基金经理的信息优势,投入本金300多万元,操作3个股票账户,通过临时购买的不记名电话卡下单,先于、同期或稍晚于其管理的基金账户买入相同股票76只,累计成交金额10.5亿元。帮助监管部门锁定这3个涉案账户的,正是大数据监测和分析。
证监会大数据系统结构?!
上交所和深交所各有一套证券交易监控系统,系统集成了交易、登记、结算数据和上市公司、证券公司等相关信息。上交所异动指标分为4大类72项,敏感信息分为3级,共11大类154项;深交所建立了9大报警指标体系,合计204个具体项目,其中包括典型内幕交易指标7个,市场操纵指标17个,价量异常指标15个。交易所针对老鼠仓等交易行为还建立了专项核查和定期报告制度。
曾在交易所从事信息挖掘的研究人员李川(化名)称,“交易所有两套分析系统,分别针对网络上可以公开获得的信息和交易所内部各账户的交易信息,这些都属于大数据。”他介绍说,大数据捕鼠大致分三步:首先是通过对网络信息和交易数据的分析挖掘出可疑账户,其次通过分析交易IP、开户人身份、社会关系等进一步确认;最后进入调查阶段。
在交易所博士后站点每年进驻的博士里,都会有两三个人专做与数据挖掘有关的工作。深交所总经理宋丽萍曾说,“原来就是通过交易数据来监控,现在文字的东西多了,信息多了,必须把它连在一起,这就需要文本挖掘的技术,构建市场监控综合数据模型。”
采集哪些信息?!
近期查处的案件显示,涉案人员及机构日益复杂,违法行为越来越隐蔽。从事内幕交易的人员,除了内幕信息知情人、知情人亲友等关系密切人员外,还涉及知情人的司机、校友、客户、原同事等较为外围的人员。利用未公开信息交易行为也从交易环节向上下游蔓延,涉及证券公司、保险资管、商业银行等。行为人大量使用亲属账户和无身份关联的他人账户,且开始使用融资账户。
当然,如果银行对账单、公安部门的户籍数据等各种有用信息也能实现跨部门共享,老鼠仓就会更容易、更快被发现。
此外,从理论上讲,大数据不但能自我学习,很快掌握新的破解方式,甚至还可以预测老鼠仓的发生。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29