京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传感器+大数据 工业互联网将被打造
随着经济增长的不确定性增加,工业客户开始将注意力从提高生产力转向提高利润率,大数据的概念也越来越火爆。有了大数据和传感器,GE希望打造出一个工业系统的互联网,进一步提高能源效率。
GE软件研发中心的研究人员演示电厂的数据可视化工具
据GE工业互联网项目负责人,前思科高管WilliamRuh透露,GE的工业互联网构想诞生于数年前的金融危机时期。随着经济增长的不确定性增加,工业客户开始将注意力从提高生产力转向提高利润率。大数据的概念也越来越火爆,最终,WilliamRuh的团队开始考虑,是不是该制定一个GE产品的“数据战略”。
GE(通用电气)为未来业务起了一个响亮的名字——工业互联网。这是GE的研发部门杜撰出来的名词,GE希望通过在其产品中增加更多的传感器来获取海量数据,并最终帮助公司提高其机车飞机引擎、核磁共振仪器等设备的能源效率。
GE计划未来三年在“工业互联网”项目上投入15亿美元,其中一部分预算将用于支持在加州圣拉蒙市新成立的软件研发中心的研究项目。例如,该研究中心的机器学习专家AnilVarma正在实验如何筛选GE生产的2万台喷气引擎中的不易察觉的警报信号,以此来预测哪些设备需要进行维护。对于某些型号的引擎,Varma的算法能够提前一个月预测其维护需求,预测准确率达到70%,这可以极大减少飞行延误。(编者按:登机前被机组通知发动机故障已经不止一次了)
大数据引擎
过去,GE的飞机引擎中的传感器都是被动模式——直到出现故障才会在仪表盘上亮红灯。这类传感器有很多,例如测量温度、压力和电压,这些传感数据过去很少被保留和研究。在大多数飞行中,引擎只会保留三个平均值,分别是起飞、巡航和降落数据。
根据Varma的介绍,GE的下一代GEnX引擎中(装备波音787飞机)将会保留每次飞行的所有基础数据,甚至会从飞机实时传输回GE分析。这样一台引擎一年产生的数据量甚至会超过GE航空业务历史上所有的数据。
虽然机器间通过传感器通讯已经不是什么新概念(例如物联网),但是GE的业务规模能让这种想法得到更快实现。“我们有最大规模的工业数据集,因为我们运营这些设备已经很长时间,”Varma说道。“我们同时掌握历史数据并监测未来数据,这让我们能够测试任何算法的可行性。”
据GE工业互联网项目负责人,前思科高管WilliamRuh透露,GE的工业互联网构想诞生于数年前的金融危机时期。随着经济增长的不确定性增加,工业客户开始将注意力从提高生产力转向提高利润率。大数据的概念也越来越火爆,最终,WilliamRuh的团队开始考虑,是不是该制定一个GE产品的“数据战略”。
突破物理极限的1%
哥伦比亚大学数据科学与工程学院教授VenkatVenkatasubramanian认为,GE应用大数据技术解决工业问题未必会一帆风顺。对于一家商业零售公司来说,能够发现消费者数据之间的关联就已经足够,例如,著名的啤酒尿布理论。在这种初级应用中,目前标准的机器学习算法就能够胜任。但是对于复杂的物理系统来说,数据模型还需要能够解释关联背后的原因。
在GE的圣拉蒙软件研发中心,研究人员正在开发新的用户界面,通过地图、模拟以及类似Twitter的设备社会化网络帮助人们进行工业数据的可视化。其中一个实验室有很多大屏幕显示器与微软的Kinect体感游戏设备连接,电厂的工人可以通过手势与数据可视化界面互动,帮助制定区域电网的操作决定。
GE还与加拿大一家电力公司通过分析卫星影像、天气地图当地停电记录等数据预测树木修剪的热点地区(掉落的树枝是雷电导致停电的主要原因之一)。
此外GE还与纽约市的一家医疗中心合作在病床和医疗设备中植入传感器,降低空床率,提高病人的接待能力。
Ruh相信即使是很小的进步也会产生巨大的效应。GE本周发布的报告估测,每提高1%的燃油效率,航空业每年能节省20亿美元,而能源行业则能节省40亿美元。要知道,GE的油气管道和电力设备每年承载着全球25%的电力输送。
“我们的运营效率能提高1%,但这一目标已经无法通过更好的设备实现,因为我们已经将物理学发挥到了极致。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16