京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的个性化互联网服务解决之道
现代社会是一个商业社会,工业化解决了批量生产商品的问题,促进商业蓬勃发展。随着社会的不断发展,商品也越来越多样化,以期满足大众的不同需求。以电视机为例,最初只有尺寸的区别,后来可以选择品牌型号。直到11年9月27日,海尔和天猫在网上发起用户定制电视的活动;用户可以在电视机生产以前就选择电视尺寸、边框、清晰度、能耗、颜色、接口等属性,再由厂商组织生产并送货到客户家中。这样的个性化服务受到广泛欢迎,2天内1万台订制电视的额度被抢光。类似的定制服务在空调、服装等等商品上都受到用户欢迎。这些事例已经展示了未来商业的曙光通过满足个性化需求来使用户得到更满意的产品,进而缩短设计、生产、运输、销售的周期来提升商业运转的效率。
大数据是实现个性化的基础
要实现个性化的商业模式,充足的数据是基础。比基尼生产厂商都知道他们的产品在海滩边或滨海城市有市场。可有谁能料到新疆和内蒙古的男人最爱给自己女人买比基尼呢?这样的潜规则隐藏在数据中,需要深挖才能见天日,就像啤酒和尿布的经典故事那样。而大数据相对于传统的数据挖掘更进一步。数据量大、数据种类多、数据之间有潜在关联是挖掘大数据的前提。整个互联网的用户和所有的商品本身就是一个足够大的数据空间,加上空间、时间、天气等等潜在相关因素,想要知道每个用户的喜好,所需要的数据量是巨大的。数据越多对用户的理解越精准。
互联网大数据处理的技术挑战
处理互联网大数据充满挑战,首当其冲的就是处理大数据的能力。为使消费数据的速度赶超生成数据的速度,拥有足够的计算资源是必要条件。在此基础上,线性扩展的计算框架、高效稳定的程序设计以及精准的算法都是大数据处理的核心能力。
第二个挑战便是时效性。用户在互联网上的操作不断地暗示其意图,只有及时感知到这些意图,才能在用户下一次操作前做出有效的响应,最终给用户带来便捷。这样的时效性要求系统的计算框架能够以数据流的方式来运转。最终导致系统在如何实时分流负载、实时容错等问题上采用与传统批量大数据处理截然不同的技术方案。
为了更大程度的满足个性化需求,还必须具有足够强大的定制能力。一方面,尽管单个用户的定制需求可能很小,但用户数量巨大,定制需求迥异,不是几个工程师努力下就能完全解决问题的。需要有像数据库SQL语言那样给用户足够多的自由,使再小的需求通过简单的操作就能满足。这样的定制能力要在数据的存储、运算、查询、展现等多方面都有体现。
阿里云的解决之道云推荐
不论是收集大数据的计算和存储能力,还是处理个性化问题所需要的实时计算和算法技术;对于网站站长和开发者而言都是不容易快速得到解决的问题。阿里云正试图通过云端服务来降低个性化服务的门槛,使更多网站站长和开发者能够低成本享有自己的个性化服务。
如果某网站是介绍美食菜谱的,用户在浏览茶树菇鸡汤的时候,如果能够有些相关菜谱推荐,那么便可以让用户在网站内停留更多时间,访问更多内容。事实上,有多种推荐算法可以找到用户感兴趣的内容:
l 从用户访问日志里面也许发现用户访问好这个菜谱以后五成用户都会去看看补血益气乌鸡汤、这种现象一定有其背后的理由,也许会成为一个不错的推荐。
l 既然用户在看鸡汤类别的菜谱,那就可以把网站里面其他热门的鸡汤菜谱推荐出来,如香菇鸡汤。
l 通过分析某一个用户过去历史的访问记录,或许能发现该用户相对于其他用户更偏向于文火慢炖的汤,那就应该适当推荐出类似炖鸡汤这样的菜谱。
l 相对于鸡汤而言,羊肉汤也是汤类别的热门品种,用户也许会吃鸡汤吃腻了想换换口味。
然而,要实现这样的推荐,传统的做法需要大量人工编辑工作。既不能做到即时,也很难保证效果。人工编辑更难验证这些推荐算法是否能在真实流量上产生足够好的效果。一个精准的推荐模型,必须对算法本身的整体效果以及用户对各种算法推荐结果的偏好作一个综合评估,这样才能找到合适每一个用户的精准推荐模型。最终让用户享受到推荐展位千人千面的个性化服务。
在云推荐的管理界面里,网站开发人员可以定制推荐位置大小、推荐内容条目数、URL范围、展现形式等参数。网站站长还能看到推荐展位的点击情况,并根据建议适当调整推荐位置参数以改善效果。
根据后台统计,网站启用云推荐后的整体流量会提升10%。这样的个性化服务让人感觉就像是钱存银行能拿到利息一样,是大数据魅力的展现。相信随着数据的不断积累及用户数量的累积,个性化服务在大数据时代能给人带来的远不止10%流量提升这样的惊喜!(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04