京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的个性化互联网服务解决之道
现代社会是一个商业社会,工业化解决了批量生产商品的问题,促进商业蓬勃发展。随着社会的不断发展,商品也越来越多样化,以期满足大众的不同需求。以电视机为例,最初只有尺寸的区别,后来可以选择品牌型号。直到11年9月27日,海尔和天猫在网上发起用户定制电视的活动;用户可以在电视机生产以前就选择电视尺寸、边框、清晰度、能耗、颜色、接口等属性,再由厂商组织生产并送货到客户家中。这样的个性化服务受到广泛欢迎,2天内1万台订制电视的额度被抢光。类似的定制服务在空调、服装等等商品上都受到用户欢迎。这些事例已经展示了未来商业的曙光通过满足个性化需求来使用户得到更满意的产品,进而缩短设计、生产、运输、销售的周期来提升商业运转的效率。
大数据是实现个性化的基础
要实现个性化的商业模式,充足的数据是基础。比基尼生产厂商都知道他们的产品在海滩边或滨海城市有市场。可有谁能料到新疆和内蒙古的男人最爱给自己女人买比基尼呢?这样的潜规则隐藏在数据中,需要深挖才能见天日,就像啤酒和尿布的经典故事那样。而大数据相对于传统的数据挖掘更进一步。数据量大、数据种类多、数据之间有潜在关联是挖掘大数据的前提。整个互联网的用户和所有的商品本身就是一个足够大的数据空间,加上空间、时间、天气等等潜在相关因素,想要知道每个用户的喜好,所需要的数据量是巨大的。数据越多对用户的理解越精准。
互联网大数据处理的技术挑战
处理互联网大数据充满挑战,首当其冲的就是处理大数据的能力。为使消费数据的速度赶超生成数据的速度,拥有足够的计算资源是必要条件。在此基础上,线性扩展的计算框架、高效稳定的程序设计以及精准的算法都是大数据处理的核心能力。
第二个挑战便是时效性。用户在互联网上的操作不断地暗示其意图,只有及时感知到这些意图,才能在用户下一次操作前做出有效的响应,最终给用户带来便捷。这样的时效性要求系统的计算框架能够以数据流的方式来运转。最终导致系统在如何实时分流负载、实时容错等问题上采用与传统批量大数据处理截然不同的技术方案。
为了更大程度的满足个性化需求,还必须具有足够强大的定制能力。一方面,尽管单个用户的定制需求可能很小,但用户数量巨大,定制需求迥异,不是几个工程师努力下就能完全解决问题的。需要有像数据库SQL语言那样给用户足够多的自由,使再小的需求通过简单的操作就能满足。这样的定制能力要在数据的存储、运算、查询、展现等多方面都有体现。
阿里云的解决之道云推荐
不论是收集大数据的计算和存储能力,还是处理个性化问题所需要的实时计算和算法技术;对于网站站长和开发者而言都是不容易快速得到解决的问题。阿里云正试图通过云端服务来降低个性化服务的门槛,使更多网站站长和开发者能够低成本享有自己的个性化服务。
如果某网站是介绍美食菜谱的,用户在浏览茶树菇鸡汤的时候,如果能够有些相关菜谱推荐,那么便可以让用户在网站内停留更多时间,访问更多内容。事实上,有多种推荐算法可以找到用户感兴趣的内容:
l 从用户访问日志里面也许发现用户访问好这个菜谱以后五成用户都会去看看补血益气乌鸡汤、这种现象一定有其背后的理由,也许会成为一个不错的推荐。
l 既然用户在看鸡汤类别的菜谱,那就可以把网站里面其他热门的鸡汤菜谱推荐出来,如香菇鸡汤。
l 通过分析某一个用户过去历史的访问记录,或许能发现该用户相对于其他用户更偏向于文火慢炖的汤,那就应该适当推荐出类似炖鸡汤这样的菜谱。
l 相对于鸡汤而言,羊肉汤也是汤类别的热门品种,用户也许会吃鸡汤吃腻了想换换口味。
然而,要实现这样的推荐,传统的做法需要大量人工编辑工作。既不能做到即时,也很难保证效果。人工编辑更难验证这些推荐算法是否能在真实流量上产生足够好的效果。一个精准的推荐模型,必须对算法本身的整体效果以及用户对各种算法推荐结果的偏好作一个综合评估,这样才能找到合适每一个用户的精准推荐模型。最终让用户享受到推荐展位千人千面的个性化服务。
在云推荐的管理界面里,网站开发人员可以定制推荐位置大小、推荐内容条目数、URL范围、展现形式等参数。网站站长还能看到推荐展位的点击情况,并根据建议适当调整推荐位置参数以改善效果。
根据后台统计,网站启用云推荐后的整体流量会提升10%。这样的个性化服务让人感觉就像是钱存银行能拿到利息一样,是大数据魅力的展现。相信随着数据的不断积累及用户数量的累积,个性化服务在大数据时代能给人带来的远不止10%流量提升这样的惊喜!(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23