京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网的大数据时代真来了?还是一直都在?
这几天在微信上看到很多关于互联网大数据的文章,也有人说大数据已经作为云计算、物联网之后IT行业又一大颠覆性的技术革命,Heven在想,互联网的大数据时代真来了?还是一直都在?其实,数据分析技术的运用已经悄然开始了,比如淘宝网、京东等购物网站监视着我们的购物习惯,百度、谷歌等搜索引擎监视着我们的网页浏览情况,新浪微博、腾讯微博好像对我们的朋友很熟悉,还有就是QQ和QQ空间总能给我们推荐那些似曾相识的朋友,但是Heven觉得我们离真正的大数据时代还有不小距离,但是一直都在。为什么这么说呢?
一、硬件条件不全:首先是网速的问题,大数据的处理必须要求高速的基础网络,而我国网络拥堵是普遍的现象,要解决现在大数据的处理是很难达到的,几乎是不可能的。
其次是处理信息的设备太少:据统计,互联网上一天产生的信息量大约有800EB,如果装在DVD光盘中要装1.68亿张、装在硬盘中要装80万个。而处理这些数据的互联网公司设备却极其少,如百度在京、山西和内蒙三地数据处理器才刚刚超过十万台,拥有70万个CPU和4000台服务器;腾讯数据平台设备8400台,单集群5600台,总存储100PB+;日新增数据200TB+,月数据增长率10%,日均JOB数100万,日均计算量5PB,但是腾讯数据总记录已经超过了375万亿条。可见现在设备是很难完全精准地处理这些互联网数据的,而大数据时代是能够完全处理现下数据并能实现精准定位网民的动向,所以说进入大数据时代还为时尚早。
二、专业型人才太少:Heven认为,大数据相关人才的欠缺将会成为影响大数据市场发展的一个重要因素,不可否认的是大数据处理人才的奇缺,不管是国家还是各大互联网公司都在加大对大数据处理人才的挖掘,如2014年5月19日,由中国人民大学、北京大学、中国科学院大学、中央财经大学、首都经济贸易大学五所高校联合组建的大数据分析硕士培养协同创新平台在中国人民大学启动;阿里集团2012年7月10日就已宣布,设立首席数据官岗位(CDO),负责推进“数据分享平台”战略。如此种种,说明大数据处理人才奇缺,也说明培养专业型大数据处理人才的迫在眉睫。
三、数据孤立,各自为战:目前国内互联网的现状是BAT三巨头各自为战,百度连接人和信息,独占了信息入口;阿里巴巴连接人和商品,独占了交易入口;腾讯连接了人和人,独占了社交入口。而他们都是死死的把握自己的入口,不让数据共享,试想这样怎样才能实现大数据化,一部分的数据又如何才能判断网民的真实意图?所以广告不能精准投放,网页的相关性不强,互联网的智能化发展只能在艰难进行。
Heven认为互联网的本质是理解用户并走向智能化,而大数据的精确处理也就是为了实现互联网的智能化,同时也是实现智能化的基础,但目前互联网大数据的处理还处在一个前期的阶段,不管是设备,人才,数据资源共享方面都是急需解决的问题,所以说,我们离真正的大数据时代还有不小距离。以上只是Heven的个人见解,表述的不是很完整,希望大家提出意见,共同进步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16