
大数据时代,要扎紧个人信息保护的篱笆
近日,关于网易邮箱用户数据库疑似遭泄露的消息在网上引起波澜,涉及数据达数亿条。此前,第三方支付机构也被曝出存在实名认证漏洞,还有一些第三方支付曝出泄露客户信息、账户被盗刷等问题。有调查显示,76%的被调查者认为个人信息在大数据时代更容易被泄露。在过去一年中,超过一半的受访者认为自己的个人信息被泄露过。调查中,对大数据使用以及个人信息保护立法,有20%的受访者认为要“加大惩罚力度,引入惩罚性赔偿制度”。(10月24日《法制日报》)
个人信息被泄漏的现象,其共同问题都在于,消费者在完成某方面消费行为,或完成某类主题的网络浏览后,其个人基本信息悄无声息地被披露给相关的商品或服务供应商。如果刨除病毒攻击、木马植入因素,披露消费者信息的,很多情况下就是电商平台、医院、电信企业、汽车及房地产销售企业(直接转让信息);还有一种可能,是社交网络、支付平台、网络安全软件,或安装在手机、PC端的其他软件,或消费者浏览过的网站、使用过的手机应用,主动捕捉了消费者的个人信息,经过提取挖掘后作为重要的数据资产,与相关企业分享使用或出售给其他企业使用。
上述两种情况,共同特征就在于搜集、挖掘分析、对外分享或出售消费者信息,并未经过消费者本人的许可,或是故意将信息授权条款加入到内容繁复的网站登录、软件和APP许可声明之中。随着国内外网络企业跨界整合的提速,一些社交网络、第三方支付机构、电商网络及其他应用软件建立了密切的结盟合作关系,甚至通过并购整合,成为了同一家集团公司掌控的分支机构——企业鼓励消费者跨网站、软件应用相互绑定身份,借此可以验证消费者个人身份信息、社会关系信息、账户信息,结合个人网络行为信息、设备信息等多方面信息,开展更趋精确的数据挖掘和预测分析。
当企业可以非常精准预测消费者行为后,确实能够更有针对性地开展营销,提高客户服务水平。但多来源信息的结合,也意味着信息发送外泄的出口增多,大型企业实施数据安全管理的难度因而提升,一旦发生数据泄露,消费者多方面、多来源隐私信息就将毫无保留地呈现在黑客面前,甚至大庭广众之下。
笔者以为,国家有关部门应致力于分别从立法、行政执法、司法、公益救助四个方面,扎紧篱笆,加强消费者个人信息保护。在立法环节,应出台规范的消费者授权个人信息使用条款,网络企业以免费或低价产品、服务换取消费者个人信息授权后,需要严格依照授权要求开展数据挖掘分析,不得以任何方式在未经消费者许可授权或超出授权范围使用消费者个人信息。要提高对违法违规非法采集使用消费者个人信息做法的罚款数额,完善处罚方式,加大这方面违法违规案件的通报范围,形成强有力的震慑。
在行政执法环节,应明确公安机关、网络信息主管部门、市场监管部门等单位保护消费者个人信息的职责分工,各部门各司其职,有效加强重点监管,加大消费者个人信息保护的抽查力度,畅通举报渠道,严格依法依规处置这方面的侵权案件。在司法、公益救助方面,可以考虑以政府购买的方式,在各地设立消费者就个人信息泄露起诉相关企业的救助基金,为起诉个人提供部分资助,鼓励消费者运用法律手段维护合法权益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15