
大数据行业:人才欠缺,高薪易得
随着大数据的流行,新的工作机会将留给那些有准备的人。现在,人们可以很方便地通过网络学习最新的科技知识,没有时间、金钱和地域限制。即使在巴基斯坦的一个小村庄里,年轻人也可以通过网络学习高级数据训练课程。
比如,像巴基斯坦这样的欠发达国家,大学学费往往很高,普通人上不起。不过,巴基斯坦的年轻人现在就完全可以通过网络学到西方国家那些先进的技术知识。类似哈佛大学和麻省理工这样的顶尖学府都开放了大量的免费优质课程,年轻人可以通过这些课程学习如何成为一名数据科学家。
数据分析师大量欠缺,要抓住机会
大数据的普及带来了很多新的工作岗位。现在优秀的数据科学家严重缺乏,就算西方国家的大学在数据分析专业里招了很多学生,这些学生的数量也远远无法满足如今市场的需求。知名咨询公司麦肯锡此前发布的一项报告预测,市场上的数据分析师将会出现严重的缺口。到2018年,美国将会缺少150万懂得如何利用大数据来帮助公司做出有效决定的专业人员,在精通数据分析的人才方面,美国也将会面临14万到19万人的缺口。
像菲律宾和巴基斯坦这样的国家,政府可能也想抓住大数据行业的这一发展机会。这些政府认为,与其把年轻人送到中东国家当一个只能拿到当地最低工资的建筑工人,或者让年轻人去西方国家当地位低下的保姆,不如让他们学习如何进行大数据的分析处理,成为一名具有国际化视野的数据分析人才。
你只需要能上网就行
好消息是,现在发展中国家的年轻人不需要远渡重洋去国外留学才能学到大数据的专业知识了。只要你能上网,你就能学习。
像Coursera、Udacity这样的网站都提供大量的课程,这些课程会像你在学校里学习一样,每堂课会布置作业,你需要按时交作业,课程结束后你还能得到结课证书。在Coursera上你可以学习世界顶尖大学的课程,比如约翰霍普金斯大学的课程。Udacity则提供很多新的学习方式,比如nonodegree,在这里你花一两千美元就能成为一个专业的网站开发师或者数据分析师。这些网站已经吸引了大量的用户,很多人在这里学习新知识。
Coursera商业发展部负责人Julia Stiglitz最近撰写的一篇文章指出,数据分析是目前Coursera网站上最流行的一门课程。美国的顶尖大学都愿意接受这种新的授课方式,这些大学给像Coursera这样的网络学习平台提供了大量优质的公开课视频。所以,你还在担心你通过网络学不到最尖端的数据分析知识吗?
你学到了知识,然后呢?
不过,你可不要认为,只要学习到数据分析的必备知识,你就能成为一个好的数据科学家了。有机构对一些顶尖的数据科学家进行过调查,这些科学家认为,要想成为一个优秀的数据分析家,你还必须做到以下几点。
第一, 训练自己的多模式思维
现实生活中一件事往往有多种解决方案,最佳解决方案会是不同的想法和解决思路碰撞的结晶,而这些想法和解决思路的来源往往也不尽相同。一个企业会从各种渠道收集信息,你需要学习在每个渠道中提取有用的数据信息进行分析,再把这些分析结合到一起去,从而找出最佳解决方案。
第二, 把它当成职责而不仅仅是一份工作
你未来的同事会希望你把这份数据研究的工作当成是一种职责,他们想听到你对于数据如何改变生活的看法。你应该用具体的例子来支持你的看法,如果你有相关工作经验更好。
第三, 扩展交际圈
在商业上,扩展人脉一直很重要,所以下班后多多出去看看吧。如果你想成为数据领域内的专家,你应该多接触这个领域内的人。多去参加那些关于大数据的论坛、讲座等活动,多关注一些关于大数据的社交媒体账号。如果你的熟人在一家优秀的大数据公司工作,当他们有职位空缺时,他们会想到你。这便是扩展交际圈带来的好处之一。
第四, 多尝试使用新工具
经常下载新的软件包试用。在GitHub和一些类似的技术论坛上,经常会有人上传自己编写的程序供大家免费试用。你可以帮忙修改这些程序中的bug,通过你自己的不断修改与不断完善,你觉得bug改得差不多了,就可以把完善后的程序放到GitHub。如果程序还不错,或许就会有人注意到你。通过这种方式,你可以显示出自己是个具有创新精神的数据分析员,能够独立解决问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29