
大数据行业:人才欠缺,高薪易得
随着大数据的流行,新的工作机会将留给那些有准备的人。现在,人们可以很方便地通过网络学习最新的科技知识,没有时间、金钱和地域限制。即使在巴基斯坦的一个小村庄里,年轻人也可以通过网络学习高级数据训练课程。
比如,像巴基斯坦这样的欠发达国家,大学学费往往很高,普通人上不起。不过,巴基斯坦的年轻人现在就完全可以通过网络学到西方国家那些先进的技术知识。类似哈佛大学和麻省理工这样的顶尖学府都开放了大量的免费优质课程,年轻人可以通过这些课程学习如何成为一名数据科学家。
数据分析师大量欠缺,要抓住机会
大数据的普及带来了很多新的工作岗位。现在优秀的数据科学家严重缺乏,就算西方国家的大学在数据分析专业里招了很多学生,这些学生的数量也远远无法满足如今市场的需求。知名咨询公司麦肯锡此前发布的一项报告预测,市场上的数据分析师将会出现严重的缺口。到2018年,美国将会缺少150万懂得如何利用大数据来帮助公司做出有效决定的专业人员,在精通数据分析的人才方面,美国也将会面临14万到19万人的缺口。
像菲律宾和巴基斯坦这样的国家,政府可能也想抓住大数据行业的这一发展机会。这些政府认为,与其把年轻人送到中东国家当一个只能拿到当地最低工资的建筑工人,或者让年轻人去西方国家当地位低下的保姆,不如让他们学习如何进行大数据的分析处理,成为一名具有国际化视野的数据分析人才。
你只需要能上网就行
好消息是,现在发展中国家的年轻人不需要远渡重洋去国外留学才能学到大数据的专业知识了。只要你能上网,你就能学习。
像Coursera、Udacity这样的网站都提供大量的课程,这些课程会像你在学校里学习一样,每堂课会布置作业,你需要按时交作业,课程结束后你还能得到结课证书。在Coursera上你可以学习世界顶尖大学的课程,比如约翰霍普金斯大学的课程。Udacity则提供很多新的学习方式,比如nonodegree,在这里你花一两千美元就能成为一个专业的网站开发师或者数据分析师。这些网站已经吸引了大量的用户,很多人在这里学习新知识。
Coursera商业发展部负责人Julia Stiglitz最近撰写的一篇文章指出,数据分析是目前Coursera网站上最流行的一门课程。美国的顶尖大学都愿意接受这种新的授课方式,这些大学给像Coursera这样的网络学习平台提供了大量优质的公开课视频。所以,你还在担心你通过网络学不到最尖端的数据分析知识吗?
你学到了知识,然后呢?
不过,你可不要认为,只要学习到数据分析的必备知识,你就能成为一个好的数据科学家了。有机构对一些顶尖的数据科学家进行过调查,这些科学家认为,要想成为一个优秀的数据分析家,你还必须做到以下几点。
第一, 训练自己的多模式思维
现实生活中一件事往往有多种解决方案,最佳解决方案会是不同的想法和解决思路碰撞的结晶,而这些想法和解决思路的来源往往也不尽相同。一个企业会从各种渠道收集信息,你需要学习在每个渠道中提取有用的数据信息进行分析,再把这些分析结合到一起去,从而找出最佳解决方案。
第二, 把它当成职责而不仅仅是一份工作
你未来的同事会希望你把这份数据研究的工作当成是一种职责,他们想听到你对于数据如何改变生活的看法。你应该用具体的例子来支持你的看法,如果你有相关工作经验更好。
第三, 扩展交际圈
在商业上,扩展人脉一直很重要,所以下班后多多出去看看吧。如果你想成为数据领域内的专家,你应该多接触这个领域内的人。多去参加那些关于大数据的论坛、讲座等活动,多关注一些关于大数据的社交媒体账号。如果你的熟人在一家优秀的大数据公司工作,当他们有职位空缺时,他们会想到你。这便是扩展交际圈带来的好处之一。
第四, 多尝试使用新工具
经常下载新的软件包试用。在GitHub和一些类似的技术论坛上,经常会有人上传自己编写的程序供大家免费试用。你可以帮忙修改这些程序中的bug,通过你自己的不断修改与不断完善,你觉得bug改得差不多了,就可以把完善后的程序放到GitHub。如果程序还不错,或许就会有人注意到你。通过这种方式,你可以显示出自己是个具有创新精神的数据分析员,能够独立解决问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04