京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代如何提升政府部门治理能力
目前,我们已经进入了一个新的时代,信息技术发展的步伐加快,各个领域的数据都呈现出了井喷式的增长,特别是在物联网、云计算以及移动互联网技术的普及之下,数据的增长实现了从量变到质变的转型,人们已经全面步入了大数据时代。大数据是对现阶段信息技术革命的一种颠覆,也是一种全新的行为模式、思维方式以及治理理念,特别是在政府治理上,大数据的影响是极大的。目前,我国开始推行“创新社会治理体制,提高社会治理水平”,在这一背景下,我们必须意识到大数据的重要作用,把握好大数据为政府治理提供的创新机遇,切实采取科学有效的措施提升政府部门的综合治理能力。
大数据时代的到来为政府治理理念的转型带来了新机遇。对于政府而言,要提升自身的治理能力,必须要在其中融入新的思维和新的文化,在这一方面,大数据中的数据思维与文化模式可以为政府治理工作的转型提供思路,如果将大数据充分地利用起来,政府治理工作便可以实现多层次、多元化、多角度发展,最终实现政府管理工作以公共服务为主、协同共治为辅的目的。如今,政府开展治理工作时,不能仅仅依靠传统的经验了,任何工作都必须要基于数据的基础上开展,这就要求政府工作人员深入到群众之中,采集客观资料,并进行科学的实证分析,以此作为开展工作的基础。也就是说,任何一项工作的开展都必须要用数据来说话,这对于促进政府工作的转型有着非常积极的效果。
大数据为政府治理模式的创新带来了新的发展机遇。大数据是对海量数据的科学运算,人们可以找寻到不同数据之间的密切联系,这也是大数据方法论的思想。此外,在大数据技术平台的支持下,人们可以采用众包、外包等一系列的组织模式来革新政府治理的组织架构,将传统的组织架构向合作、协同方面进行转型,从这一层面而言,将大数据理论引入到政府治理工作中,可以为政府治理模式的开展提供创新的模式。种种实践证实,大数据给政府治理模式的创新主要带来了几个方面的发展机遇:一是促进了政府治理模式从粗放式到精细化的转型;二是促进了政府治理模式从单一性到协同共享性的转型;三是促进了政府治理模式从被动性到主动性的转型。
大数据时代的到来提升了政府决策工作的科学性。近年来,政府各项公共事务变得越来越复杂,仅仅依靠工作人员的个人感知是无法对所有事务做出科学、准确的判断的,要想从根本上提升政府决策工作的科学性,就需要合理应用大数据思维模式,收集数据,分析现阶段经济社会运行过程中的规律,采取合理的数据挖掘来开展决策工作。从本质上而言,大数据给政府决策部门带来了如下的改变:首先,在制定决策时,政府的决定已经不是个别领导的决策,而是必须要使用数据说话,根据数据来制定出决策,与传统的决策模式相比,该种决策模式更加的科学、精准;其次,在决策实施跟踪阶段,政府可以充分利用社交网络与物联网来分析决策的实施情况,利用数据对实施成果进行监控,这可以帮助政府及时地调整决策方向和决策模式。
大数据为政府服务效能的提升带来新的机遇。要提升政府的综合治理能力,必须采取科学有效的措施提升政府的服务效能,这也是大数据背景下建设服务型政府的关键性因素。在政府治理的背景下,要提升政府的服务效能,不仅需要提升政府行政部门的审批效率,还要采取相应的措施提升政府公共服务产品的质量。一是在提升行政审批效率方面,凭借大数据能够帮助政府打破不同部门之间的信息孤岛,构建出完善的行政审批服务云平台,利用大数据能真正的为老百姓办实事,为老百姓节约时间,这既有效提升了政府开展行政工作的效率,还可以大范围的节约政府开支。二是在提升公共产品的服务质量方面,政府工作人员可以利用大数据对公共服务产品的数据进行深入的分析与挖掘,让公共服务产品供给走向个性化、分层化以及精准化发展道路。还可以利用大数据的兼容性和开放性,鼓励越来越多的社会大众参与到政府决策活动中,让他们对政府决策工作进行科学的监督,不断提升公共服务产品的综合质量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23