
大数据发展十大趋势分析_数据分析师
2012年大数据发展如火如荼,大有赶超云计算之势。如果把今年比作大数据落地生根的一年,那么2013年将迎来其茁壮成长,甚至开花结果的一年。有预测称,大数据市场将以每年40%的速度增长,2012年大数据市场规模约为50亿美元,2013年将翻倍。2013年大数据发展有哪些新趋势呢?不管是IDC、Gartner还是国内大数据研究机构都给出了各自的答案,笔者在这里总结一下各方观点,并谈谈自己的想法。
预测1:开源大数据商业化
随着闭源软件在数据分析领域的地盘不断缩小,老牌IT厂商正在改变商业模式,向开源靠拢,并加大专业服务和系统集成方面的力度,帮助客户向开源的、面向云的分析产品迁移,主要是Hadoop和R两类技术。与人们的传统理解不同,大数据市场开源的盛行不会抑制市场的商业机会,相反开源将会给基础架构硬件、应用程序开发工具、应用、服务等各个方面的相关领域带来更多的机会。
预测2:Hadoop将加速发展
做为大数据领域的代表技术,许多企业都把明年的计划放在Hadoop上。预测称用户对Hadoop的优化将更注重硬件,同时,对企业友好的Hadoop技术市场将达到前所未有的高峰。从整体上说,不仅是Hadoop本身本会得到迅猛的发展,同时Hadoop在多个数据中心中的配置和无缝集成技术也将成为热门。Hadoop的专业知识正在飞速增长,但是这方面优秀的人才仍然很缺乏。
预测3:大数据复杂度降低
大数据技术的落地将会有两个特点:一个是对MapReduce依赖越来越少,另外一个是会把Hadoop技术深入的应用到企业的软件架构中。针对第一个特点,像Cloudera的Impala和微软的PolyBase这样的软件会得到充分发展,他们绕开了MapReduce,直接对存在HDFS中的数据进行处理。针对第二个特点,大规模的使用Hadoop是个必然趋势,渐渐的就会形成行业的标准,进而成为更有价值的软件基础,而不仅是自己内部使用。
预测4:打包的大数据行业分析应用
随着大数据逐渐走向各个行业,基于行业的大数据分析应用需求也日益增长。未来几年中针对特定行业和业务流程的分析应用将会以预打包的形式出现,这将为大数据技术供应商打开新的市场。这些分析应用内容还会覆盖很多行业的专业知识,也会吸引大量行业软件开发公司的投入。
预测5:大数据细分市场
大数据相关技术的发展,将会创造出一些新的细分市场。例如,以数据分析和处理为主的高级数据服务,将出现以数据分析作为服务产品提交的分析即服务(Analyze as a Service)业务;将多种信息整合管理,创造对大数据统一的访问和分析的组件产品;基于社交网络的社交大数据分析;甚至会出现大数据技能的培训市场,教授数据分析课程等。
预测6:大数据推动公司间的并购
大数据概念覆盖范围非常广,包括非结构化数据从存储、处理到应用的各个环节,与大数据相关的软件厂商也非常多,但是又没有哪一家厂商可以覆盖大数据的各个方面。因此,在未来几年中,大型IT厂商将为了完善自己的大数据产品线进行并购,首当其冲的将是信息管理分析软件厂商、预测分析和数据展现厂商等。
预测7:大数据分析的革命性方法出现
在大数据分析上,将出现革命性的新方法。就像计算机和互联网一样,大数据可能是新一波技术革命。从前的很多算法和基础理论可能会产生理论级别的突破。
预测8:大数据与云计算:深度融合
大数据处理离不开云计算技术,云计算为大数据提供弹性可扩展的基础设施支撑环境以及数据服务的高效模式,大数据则为云计算提供了新的商业价值,大数据技术与云计算技术必有更完美的结合。同样的,云计算、物联网、移动互联网等新兴计算形态,既是产生大数据的地方,也是需要大数据分析方法的领域。
预测9:大数据一体机陆续发布
自云计算和大数据概念被提出后,针对该市场推出的软硬件一体化设备就层出不穷。在未来几年里,数据仓库一体机、NoSQL一体机以及其它一些将多种技术结合的一体化设备将进一步快速发展。
预测10:大数据安全令人担忧
大数据的不断增加,对数据存储的物理安全性要求会越来越高,从而对数据的多副本与容灾机制提出更高的要求。网络和数字化生活使得犯罪分子更容易获得关于人的信息,也有了更多不易被追踪和防范的犯罪手段,可能会出现更高明的骗局。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15