京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代带来了哪些机遇
经过30多年的探索与实践,国家核安全局实现了核与辐射安全监管能力的不断提升,但同时也面临着推进核与辐射安全监管体系和监管能力现代化的时代课题。环境保护部副部长李干杰多次强调要按照系统化、科学化、法制化、市场化和信息化的要求,着力研究,做好顶层设计,逐步推进。
然而,在大数据、互联网时代,任何一种监管或治理都不再是单方面的政府治理。“大数据将不仅是技术或生产力,它同时也是生产关系的重塑”,将对我国治理体系和治理能力产生深远的影响。如何利用大数据加快核安全监管现代化进程是当前我们面临的重大课题。
得数据者得天下
大数据的核心是数据,本质是管理。数据是与物质、能源同等重要的基础性战略资源,数据的采集和分析涉及每一个行业,是带有全局性和战略性的工作。正所谓“得数据者,得天下”。因此,数据从哪里来是关键。
纵观核安全监管30年,系统内累积的大量历史资料可看作是“沉睡数据”;一些被标识但没有得到有效应用的数据可看作是“仅标识数据”;而近年来建立的核与辐射安全监管信息化系统中的结构化数据则可看作“活跃数据”。
此外,系统外的其他政府机构和被监管对象的相关数据也是核安全数据集或数据仓库的重要组成部分,必须加以重视和利用,才能形成真正的大数据。
从我国信息化发展的现实情况看,“不愿共享开放”、“不敢共享开放”、“不会共享开放”的情况依然较为普遍。特别是我国各级政府、公共机构汇聚了海量数据资源,但除了部分自用和信息公开外,大部分没有充分发挥数据资源作为“生产要素、无形资产和社会财富”的应有作用。
因此,要打破国家核安全局与其他政府机构、行业和领域的壁垒,建立数据资源开放与共享机制,让数据流动起来,打破数据孤岛;把沉睡数据发掘出来、把仅标识数据系统化,使之成为活跃型数据,才能让数据共享成为可能,继而创造价值。
然而,最基本的问题即安全问题是大数据应用的保障,大数据安全很大程度上已经上升到国家战略层面安全,目前美国、欧洲和日本等国都出台了数据安全战略。面对大数据时代的机遇,我们能不能把控数据安全、保护数据资产是重大挑战。
大数据带来变革
大数据背景下的政府治理将不仅是权位治理,也是公共治理和多元治理、数字治理,在以数字技术为基础、以网络为载体的新媒体生态环境下,大数据进一步赋权于个人与组织,使其分享原本国家独占的治理权力,这在公共安全与应急管理等方面表现更为突出。同时,原本封闭的治理体系逐渐向开放透明的治理体系转变。中国国际经济交流中心副研究员张茉楠指出,“大数据必然要求数据开放、实现共享,这在一定程度上破解了制度黑箱问题。
在大数据、云计算、社会化媒体等全新信息技术的猛烈冲击下,原来存在于政府和公众之间的信息差、文化差、知识差、能力差正在逐渐消除。
经过30多年的探索与实践,国家核安全局实现了核与辐射安全监管能力的不断提升,但同时也面临着推进核与辐射安全监管体系和监管能力现代化的时代课题。环境保护部副部长李干杰多次强调要按照系统化、科学化、法制化、市场化和信息化的要求,着力研究,做好顶层设计,逐步推进。
然而,在大数据、互联网时代,任何一种监管或治理都不再是单方面的政府治理。“大数据将不仅是技术或生产力,它同时也是生产关系的重塑”,将对我国治理体系和治理能力产生深远的影响。如何利用大数据加快核安全监管现代化进程是当前我们面临的重大课题。
得数据者得天下
大数据的核心是数据,本质是管理。数据是与物质、能源同等重要的基础性战略资源,数据的采集和分析涉及每一个行业,是带有全局性和战略性的工作。正所谓“得数据者,得天下”。因此,数据从哪里来是关键。
纵观核安全监管30年,系统内累积的大量历史资料可看作是“沉睡数据”;一些被标识但没有得到有效应用的数据可看作是“仅标识数据”;而近年来建立的核与辐射安全监管信息化系统中的结构化数据则可看作“活跃数据”。
此外,系统外的其他政府机构和被监管对象的相关数据也是核安全数据集或数据仓库的重要组成部分,必须加以重视和利用,才能形成真正的大数据。
从我国信息化发展的现实情况看,“不愿共享开放”、“不敢共享开放”、“不会共享开放”的情况依然较为普遍。特别是我国各级政府、公共机构汇聚了海量数据资源,但除了部分自用和信息公开外,大部分没有充分发挥数据资源作为“生产要素、无形资产和社会财富”的应有作用。
因此,要打破国家核安全局与其他政府机构、行业和领域的壁垒,建立数据资源开放与共享机制,让数据流动起来,打破数据孤岛;把沉睡数据发掘出来、把仅标识数据系统化,使之成为活跃型数据,才能让数据共享成为可能,继而创造价值。
然而,最基本的问题即安全问题是大数据应用的保障,大数据安全很大程度上已经上升到国家战略层面安全,目前美国、欧洲和日本等国都出台了数据安全战略。面对大数据时代的机遇,我们能不能把控数据安全、保护数据资产是重大挑战。
大数据带来变革
大数据背景下的政府治理将不仅是权位治理,也是公共治理和多元治理、数字治理,在以数字技术为基础、以网络为载体的新媒体生态环境下,大数据进一步赋权于个人与组织,使其分享原本国家独占的治理权力,这在公共安全与应急管理等方面表现更为突出。同时,原本封闭的治理体系逐渐向开放透明的治理体系转变。中国国际经济交流中心副研究员张茉楠指出,“大数据必然要求数据开放、实现共享,这在一定程度上破解了制度黑箱问题。
在大数据、云计算、社会化媒体等全新信息技术的猛烈冲击下,原来存在于政府和公众之间的信息差、文化差、知识差、能力差正在逐渐消除。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01