
大数据时代下三马难追的互联网金融
“大数据”、“风险管控”近来可谓是互联网金融老总们不离口的“热词”。由三马难追网主办的2015互联网金融研讨会上,十余位业界、政界知名人士及专家学者集中对互联网金融发展的一系列问题进行深入交流与探讨,毋庸置疑,热点话题依然离不开这些。作为互联网金融行业的优秀代表——三马难追网有何看法?
“大数据”又称巨量资料,是数量巨大、结构复杂、类型众多的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用,形成智力资源和知识服务能力。简言之,从各种各样类型的数据中,快速获得有价值的信息的能力,就是大数据技术。在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始被利用起来,通过各行各业的不断创新,逐步为人类创造更多价值。如今大数据几经酝酿终于迎来了它的时代。
在我们看来,大数据的根本不在于多与大,而在于将数据运用于业务,直接转化为生产力。以亚马逊和中国移动的对比为例,“中国移动拥有海量的用户信息,但是相比亚马逊它就不算大数据了,因为后者利用手中的数据创造了价值,可谓真正的大数据。”
大数据时代已经来临,它将在众多领域掀起变革的巨浪。然而,大数据的核心在于为客户挖掘数据中蕴藏的价值,因此,针对不同领域的大数据应用模式、商业模式的研究将是大数据产业健康发展的关键。三马难追网的产融结合模式可谓将数据运用于业务的典范。三马难追网凭借互联网金融的敏锐嗅觉,审时度势的提出了产融结合P2P的理念:将借款方锁定在国内新兴产业下的优质企业。这些企业有着良好的实体经营,有前景光明的项目,能提供固定资产抵押,同时有借款需求以促进本身的高速发展。三马难追网将引导金融资本流向这些有投资价值的企业,推动产业发展,同时带给投资者更高的回报。
下面谈谈风险管控:互联网金融应主动管控风险
风险管控是互联网金融业绕不开的话题。互联网金融在改变金融服务方式的同时,因其巨大的交易量和互联网渠道的特点对风险管控提出了更为严格的要求。怎样确保用户的安全与隐私,如何完善监管并促进行业生态链稳健发展,如何以科学化、系统化的手段对之进行管控都成为互联网金融亟待解决的问题。近日,央行银监会发文规范第三方支付,对针对性的问题细化了规范,预示着互联网金融的监管已经提上了国家议程。虽然互联网金融的风险控制在业界已经形成共识,然而,除了外部推力下的风险管控,当前的企业如何主动去规避风险,更安全更有效的实现自身社会价值呢?
我认为,任何事物本身都有风险,与其把金融看成是有风险的行业,不如把它看成管理风险的行业。他表示,三马难追网从企业成立之初,就一直在主动规避风险,在合规、流程、资金等角度调整方向把风险降到最低。比如,三马难追网一直遵循严格控制利率,严格把控借款者的资金用途的原则;通过对原有的P2P及众筹模式进行创新,在符合国内相关法律及金融监管的前提下打造全新的网络投融资平台的运营模式;通过与第三方小额贷款公司、第三方担保公司、征信公司、律师集团等机构合作,为投资用户提供强大而全面的投资安全保障。李鸿恩还分享了三马难追网在降低风险方面的新经验——新近成立的投资者保护委员会,他表示,“成立委员会的目的就是通过让投资者监督平台,降低投资者的投资风险”。
三马难追网投资者保护委员会,是三马难追网华斯达克投融资平台首倡、三马难追网投资人自愿成立的自律性组织,由易通贷投资人代表和平台工作人员共同组成,通过规范的章程、定期的会议和活动,加强与投资人的互动交流,了解投资人的真实需求,实现委员会的良性运作和自律管理。三马难追网是目前行业第一家也是唯一一家成立投资者保护委员会的P2P网贷企业。三马难追网投资者保护委员会成立后,委员将代表投资人参加三马难追网组织的开放日及考察活动,应邀出席三马难追网举办的各种庆典活动。并通过召集投资者保护委员会会议,对三马难追网的信息披露进行监督,对投资者保护基金进行监督,及时了解投资人的意见和建议,以及具备投资者委员会赋予的其他权利。这对于三马难追网的投资人来说是绝佳的福音,也是三马难追网关于“始终坚守对借款人的严格把关;做诚信、稳健的网络借贷平台;一切以投资者的利益为先;积极保证投资者的资金安全”承诺的实践。
互联网金融企业只有探索安全、高效、专业的中国模式,才能拥抱事业之春,做行业的领先者。三马难追网对于互联网金融理念及实践的创新,将为整个行业的生态朝良性发展做出积极影响。可以预见,它将会面临更多机遇。而作为誓做行业领先者的三马难追人,将会更加砥砺精神,实践其愿景:走在时代的前端,打造出中国最诚信可靠的P2P网络借贷平台,成为一家卓越的、实现巨大社会价值的企业!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29