
全球零售业的大数据营销革命
大数据时代来临之际,各类电子商务网站纷纷以数据为武器,分析和识别顾客的购物喜好,为顾客提供个性化服务,由此收到了良好的效果。如今,传统零售商也不甘落后,开始利用手中的大数据武器进行反击,并由此拉开了一场线上线下的大数据营销之战。
雨果网在此介绍英国广播公司(BBC)发表的关于大数据在商务营销中的应用:
零售业正发生翻天覆地的变化
想象一下,当你走进一家百货商店时,你的所有情况都被商家如指掌地掌握了:你的名字、身材尺寸、在线或实体店的购物记录,甚至你的生活观、宇宙观等等。
如果这样的话,你是否觉得自己成为了名人?抑或一个正在被调查的嫌疑犯?你的回答将事关未来零售业的前景,因为在实时大数据分析的推动下,零售业正发生了翻天覆地变化。
早在1994年,英国零售巨头旗下的顾客研究数据库Dunnhumby就设立了顾客忠实卡系统“Clubcard”,专门用来收集顾客的信息资料。
如今,这些历史销售记录被大量的新数据补充和完善,这些新数据包括,社交媒体内容、天气状况——从天气状况可以获知应当采购多少烧烤材料、啤酒、雨伞等。
这些数据收集起来之后,被进一步实时分析,零售商及其员工就可以为顾客提供量身定做的服务,无论在线商店还是实体店,都可以这么干。SAP软件公司的高管Klaus Boeckle称,如果你知道顾客想买什么,以及你现在拥有库存的货物是什么,那么你就可以为这些顾客提供精准的服务,不过这些必须实时操作才行。SAP软件公司开发的数据分析平台Hana被ebay、B&Q等知名零售公司所采用。
苹果公司开发的iBeacon是一款蓝牙跟踪器,用于定位顾客智能手机的位置。当顾客走进商店时,这款设备将帮助商家或APP发布者识别和定位这些顾客,收集顾客资料。与智能手机对接的类似设备还将会被继续推出,用以收集顾客的资料。
化妆品零售公司Lush的商店和仓库员工手上都掌握了数据分析工具,因此他们可以轻而易举地获知实时销售数据。Lush公司高管称,员工掌握了数据分析工具之后,既可以鼓励他们的销售热情,也能使他们获知更多信息,并为顾客提供更好的服务。
比如,当销售员通过数据分析结果发现,某款沐浴液与某种洗发水搭配起来卖得很好。此时,销售人员可以重新布局店铺,将两类商品放在一起,这将提升销售额。
电子商务的个性化大数据营销
在网络销售的大数据更具有个性化,这一趋势非常明显。
亚马逊在全球范围内拥有2.4亿个顾客,年营收总额达750亿美元。即便面对着如此庞大的顾客群体,亚马逊也成功地进行了顾客数据的收集和分析,并据此提升了自己的服务质量。早在2004年,亚马逊的数据收集和分析能力已经超过了现在大部分的零售商。
亚马逊首席技术官Werner Vogels称,再多数据你也不嫌够,数据越大越好,因为你收集了越多数据,你的收获越多。
他补充道,云计算的出现和实时数据处理技术的诞生,使零售们更加精准地为顾客提供服务。比如,在一个极其寒冷的冬日,你所在城市的零售商会向你推荐此前光顾过的某品牌外套。如果你加入其它的数据资源,比如语音或视频,结果将变得非常有趣。
亚马逊开发了一款购物推荐搜索引擎,它可以根据你之前的采购行为和习惯,向你推荐你可能感兴趣的商品。如果你正在购买一个烧水壶,亚马逊将根据你之前的数据,向你推荐一个能与你厨房的其他器具相匹配的水壶。
不过,这一购物推荐搜索引擎并不太完美,幸好它具备 “机器学习”的功能,可以自动改进和修复其数据,因此它将变得越来越好。
实体零售商的大数据武器
面对着亚马逊势如破竹的进攻,传统零售商们也利用自己的大数据武器进行反击。
RichRelevance公司就是这样一位反击者。RichRelevance公司的零售顾客包括玛莎百货、Boots、John Lewis等,如今它也非常擅长利用这些零售商收集的数据资料,并为顾客提供个性化的购物服务。
RichRelevance公司利用其开源代码体系Apache Hadoop收集并分析数据,根据顾客之前和现在的购物习惯,实时地预测顾客在某一特定的时间最可能买什么东西。分析这些数据的时间只有20毫秒,公司老板Selinger称,帮顾客找到他们最想买的东西,可以将销售量提高到3%至10%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04