京公网安备 11010802034615号
经营许可证编号:京B2-20210330
多赢金融:大数据时代的风控变革
近期,网贷行业出现了两组引人注目的数据。一是截止目前累计问题平台数量已达上千家,二是整个行业的累计交易额已经突破万亿。通过这两组数据,我们能够明显感觉到行业已经步入高速发展阶段,与此同时,风险事件也难以忽视。尤其是累计问题平台的数量,几乎占到了当前平台总数的三分之一。究其根源,除去经营不善、恶意诈骗等风险类型之后,还有不少平台所爆发的风险事件是因其自身风控水平不足导致的。由此可见,传统风控在互联网金融领域已经开始暴露不足,那么在人人倡导大数据的互联网时代,网贷行业的风控是否会掀起一番腥风血雨的大变革呢?
大数据风控是什么?会给P2P企业带来什么样的影响?
简单来说,大数据风控就是针对个人收集的海量数据,并针对收集来的数据进行分析,最终得出信用评估报告,金融机构将通过个人的信用评估报告来决定是否提供相应的金融服务。那么,这些数据主要由哪些内容组成?以目前比较主流的一些征信机构的大数据为例,央行的征信报告体现的是你在传统金融机构的信息留存;芝麻信用则依靠用户的购物、消费数据来建立信用评估模型。而在一些细分领域,征信机构更多的是采集行业数据,比如同盾的反欺诈系统,是利用行业内的大数据来给网贷行业提供反欺诈服务。
那么,大数据对于P2P企业来说真的是万能药吗?未必,大数据其实还不能够完全解决当前网贷行业的风控难题,原因主要有以下几点。首先,提供大数据服务的公司本身在数据的采集上仍存在着一定的局限性,至今还没有一家公司能够提供全面的风控数据。其次,大数据不适用于借贷业务的全部风控流程,从这一点来看,大数据风控只是固有风控流程的一种补充。
诚然,大数据风控还存在着诸多不足,但结合现阶段的行业发展来看,传统的风控方式已经不能满足P2P的发展需求了,业务瓶颈亟待突破,因此风控变革也是必由之。一方面,传统风控方式在人力成本和时间成本上的投入都是巨大的,在行业快速发展的阶段,这种烦冗的方式很难跟上整个行业的发展趋势。另一方面,传统风控过于依赖风控人员的个人经验,难以规避道德风险,由此也导致了P2P行业难以形成一套标准化的风控流程。而大数据风控的引入,一定程度上可以推进贷款审批的标准化进程,从而进一步提升行业整体的风控水平。
大数据风控将成行业常态,多赢金融提前布局
2015年10月17日,多赢金融与中国最领先的风险控制和反欺诈供应商同盾科技达成战略合作关系,多赢金融将通过对接同盾科技的反欺诈云服务,来帮助平台提升风控能力,强化防御系统。据了解,双方接下来还将在羊毛党、虚假交易、账户盗用、洗钱、刷单、套现等方面展开合作,通过跨行业大数据联防联控,实现全方位的信息互通,并最终织成一张数据大网,让欺诈者无处遁形。
行业发展即将步入监管期,平台在这个阶段引入大数据风控,一方面是出于保障投资者权益的考虑。另一方面则是着眼于平台的合规运营,希望通过大数据筛选掉不合格的业务,避免投资者权益受到侵害。据悉多赢金融在上线一年多的时间里,就在整体交易额及用户数量方面创下了不菲的成绩,因此也被誉为是房贷领域的一匹黑马。随着行业竞争的加剧,现阶段引入大数据风控体系,也能够在一定程度上保障平台在未来的竞争格局中提前占领高地。
完善风控体系,多赢金融大数据风控仅是第一步
除了业务流程的风险控制,技术环节的安全管控在整个风控体系中也显得至关重要。为此,多赢金融还同步引入了天威诚信的SSL证书,将官网HTTPS化。据了解,HTTPS是HTTP的加密版本,而多赢金融所采用的是Symantec(赛门铁克)SSL证书全站HTTPS加密,能够对用户与服务器之间传输的数据进行有效加密,即使被黑客拦截,也是密文显示,大大提高了传输数据的安全。另外,采用https加密的网页,其相关的访问数据也将得到加密,用户隐私得到了十足有效的保护。同时,多赢金融表示,为了持续提高大数据风控水平和保证网站技术安全,今后还将引入更多的国内专业机构,以提供更为完善的风险管控服务。多赢金融将大数据风控同时应用于业务层面和技术层面,无疑能够藉此打造出一个房贷领域的风控标杆企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26