京公网安备 11010802034615号
经营许可证编号:京B2-20210330
挖掘监控视频的实时商业大数据
零售商考虑视频监控,通常以损失预防和保障运维安全为背景。但监控视频在另外一个领域也能够提供巨大的价值:收集实时的店内情报信息,助力提高利润率。
假如您经营一家或多家零售商店,通过网络摄像机内置的各种分析功能,您不仅可以观察店内顾客的行为,而且还可以获得实时的统计数据,从而帮助您提升店面布局、商品布置和陈列,甚至发现店面的“瓶颈”和“死区”问题。与顾客调查、“神秘购物者”等随意性的方法不同,网络视频能够向您准确而公正地报告较长时间段的即时情况和变化情况。您可以清晰地了解顾客在各个购物通道的移动情况,并籍此优化店面布局方案和商品营销策略,最终促进销售和提高盈利能力。
通过信道共享情报信息
因为监控视频流通过网络传输,所以多个部门可以安全地实时共享店面活动的画面。商店管理人员可以比较多家商店各项工作的分析数据,包括顾客流量和销售统计等。您甚至还可以下载并与供应链共享精选的视频,从而提升库存水平、商品选择和备货周转。
优化店面布局方案
基于网络的视频监控系统能够轻松地识别商店里的热点、死区和瓶颈。您也可以轻松地对系统进行编程,以生成热图,显示特定时段的顾客流量。这些热图可以作为改善店面布局的重要依据,为商品设计出更具吸引力的选购路径。您还可以将热图流量模式与销售统计数据结合起来,以即时评估店面布局的变化所产生的影响,包括顾客流量、商品销售和平均销量。
图像说明:热图使得零售商能够识别商店里的热点、死区和瓶颈。
改善堆头和陈列
在零售经营方面,可以充分利用视频情报信息的另外一个领域是商品布置与陈列策略。商店管理人员可以记录顾客与不同陈列的互动视频,然后对热图进行评审,看看这些陈列在吸引购物者购买商品方面的效果如何。通过视频监控,您还可以比较设置和没有设置某种堆头或陈列的商店之间的顾客流量和销售数据。
评估广告和标牌
同样,您也可以通过研究监控视频捕捉的顾客流量,来评测促销活动、店内广告及标牌的效果。您甚至可以通过先进的视频分析功能,监测顾客在某个标牌或陈列面前的驻留时间。智能视频分析应用软件可以提供大量重要的业绩统计数据,包括平均滞留选购时间,观看时间的分布,以及特定时段参与观看的购物者人数。
将视频监控情报信息置于它能够发挥最大作用的地方
通过观看海量的商店视频来发掘重要的数据,这种方式不仅极其繁琐而且不准确。然而顾客流量模式确实又能够揭示关于顾客的许多信息。那么您可以在商店里策略性地部署数量充足的智能网络摄像机,让这些摄像机自动分析视频数据,并为您收集各种有用的信息,从而减少观看视频所需的时间。智能视频监控系统通过复杂的数学算法,从录制的视频中提取移动的物体或其他可以识别的形状,同时过滤掉不相关的图像或运动。智能决策规则控制数据搜索,以确定是否应该标记视频记录的各项活动,以便进一步评审。
尽量在网络摄像机内部处理视频,这样的做法有诸多优点。例如,边缘情报信息有助于您:
1.减少带宽使用——网络摄像机经过编程,可以在指定的场景区域中监测到有活动时才传输视频。这样能够大幅度降低带宽消耗和评审视频所需的操作人员数量。例如,网络摄像机可以从一帧视频中提取人数,并只发送必要的数据和一些照片,而非发送几个小时未经过滤的视频,因此避免了不必要的带宽消耗。
2.降低服务器成本——在一个集中式的视频监控架构中,服务器通常处理4-16个视频流。若网络摄像机参与数据处理,则服务器可以处理100多个视频流。以人数统计应用为例,其结果数据(而非视频流)可以直接发送至数据库,从而进一步降低了服务器的载荷。
3.改善视频监控分析——网络摄像机对压缩之前的原始视频数据进行处理,其分析质量可大幅度提高。这种配置还减少了处理传输所需的服务器的数量,这是因为处理之前为解压或转码而通过网络实际发送的视频数据包减少了。
4.降低运营成本——所需服务器减少了,电能损耗和维护成本也会相应降低。支持视频监控系统的服务器机房和专门设备减少了,相应的环境压力也会有所缓解。
5.降低设备投资成本——仅传输重要的信息(元数据和照片),减少了网络带宽的使用,使得零售商能够部署更多支持较低数据速率的中档网络组件。
将视频智能和POS相结合
因为网络视频系统一般都基于开放式的标准,所以它们能够轻松地集成其他的零售系统,从而提供更高水平的智能分析。例如,通过将POS寄存器的数据与视频监控分析功能相结合,您甚至能够判断出商店里单个商品的转化率。此外,您还可以追踪日常效率等员工业绩的发展趋势,从而判断是否需要进一步的培训,或者识别影响收银员效率的其它因素。
影响经营利润
仍然将视频监控严格地视为一种损失预防手段的零售商,势必会痛失良机,无法充分利用这种真正强大的商业智能。网络视频系统提供了一种高效而公正的方式,来分析顾客行为和购物流量。该技术可以用来评估和比较单个商店或整个连锁店的商品营销工作。通过战略性的应用,网络视频能够给商店管理人员提供实时分析,以便优化店面布局、商品布置和广告安排,从而提升商店的购物体验,最终提高商店的经营利润。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08