京公网安备 11010802034615号
经营许可证编号:京B2-20210330
"为大数据“去魅” ——对《大数据时代》的一点反思
去逛一些大型商场,有时你会发现,啤酒旁边摆放的竟然是尿布。这种做法最先起源于沃尔玛,沃尔玛通过对超市人群购买行为的大量数据分析,发现男性来买啤酒的时候,通常也会买尿布。于是超市将尿布和啤酒摆放在一起出售,从而提高利润。
尿布与啤酒之间的奇妙关联,背后是大量数据的挖掘与分析。这个小小的案例体现的便是一种大数据思维。维克托迈尔舍恩伯格在《大数据时代》提出大数据思 维的三个原则:一、不是因果关系,而是相关性;二、样本=全部不是随即样本,而是全部数据;三、不是精确性,而是混杂性。也就是说,大数据经 由尽可能多的数据挖掘出那些我们平时根本无法察觉到的隐秘联系,轻松地知其然,即使我们完全不知其所以然。
大数据描绘了一个激动人心的未来,也难怪很长一段时间以来,大数据成为最热门的概念之一。人们对大数据的拥趸和美好想象,一方面是我们生活的世界正在 数据化:物联网上,购买行为的数据化;导航时,方位的数据化;微博微信上,沟通的数据化这为大数据时代提供了可能;另一方面,现代社会仍面临 着许多未解的难题,许多跨不过的障碍,人们期冀于大数据能够力挽狂澜,帮助现代人走出困境。
在这样的背景下,大数据正被不断神化。纽约时报专栏作者大卫布鲁克斯《大数据不能做什么?》很难得地发出了不同的声音。他指出大数据的几个缺陷。首 先,大数据擅长于分析关系的数量而非质量,因此它会忽略很多举足轻重的信息。比如社交网络的数据可以分辨出你的6个同事,你一天中有76%的时间会见他 们,却很难发现你一个一年只见两次面的童年伙伴。其次,大数据不懂背景。我们说一句话究竟是认真的还是开玩笑,是为了表达愤怒还是善意,这些要放在具体语 境分析,数据分析很难搞清楚这些。还比如大数据会带来大量毫无意义的伪相关;数据偏爱潮流,忽视创新;原始数据其实并不原始,原始数据往往会被扭曲,等 等。
除此,也有人以为,大数据最大的问题在于,它过分夸大了数据的作用,以为数据越多越好。事实上,我们最大的难题永远都不是如何获取数据,而是如何找到数据 之间的联系,近十年来概率模型应用的规模一再扩大,可准确率却停滞不前这个教训不该被忘记。啤酒与尿布只是最表层数据挖掘,真正的数据处理比谷歌翻译 复杂成千上万倍,但即便谷歌翻译已如此先进,你也别指望它信达雅。一个太平洋是水,加个大西洋也是一样的水,数据规模到达一定程度之后,继续 扩充的意义已经不大,没有发现关联,再多数据也百无一用,混杂性其实就是伪相关。
人人呼唤大数据,就像人人都呼唤要创新、要改革。然而,问题的难度永远在于:如何创新,如何改革。我们需要大数据思维为我们点亮思想的火花,但同时必须正 视寻找数据关联存在的巨大艰难。否则,大数据很容易成为一个空洞的原地打转的话语,徒然给了很多人打了鸡血般的鲁莽和热情,投入大量的人力物力财力,以为 挖到了一座金山,实际却是一堆无用的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27